Better Foundations
for Secure Software using
Trusted Hardware & Verification

Shweta Shinde

ETH Zurich

Security breaches are on the rise

37 billion records exposed

through data breaches
in 2020

Average of 1-25 Bugs per 1000 lines of code

The new normal: Hundreds of bugs a year in Linux

Operating System (Linux Kernel)

27 Million Lines Hypervisor (XEN)
0.5 Million Lines
A A
454 62
) ob
4— > Y= 5
O m O m
N N 42
Y & S = 35
€5 €5
217
2 § 189 177 170 2 §
133 _— 123 115 130
o 90 6 71 I83 86
19 5 22 15 19 l . 2 2 2
— | . [L I 1 -
o9 "9 S\
N S S

(Year)

Current computing stack is prone to attacks

m Encrypted output

7 s R
Genome Analytics Other
data Application Apps
- /
Operating System
Hypervisor
4 I
1)
Hardware I_I::l:I
¢l
- /

* Encryption or other
sophisticated
techniques at the
application layer

* Bug in lower layers 2
Compromise the
security of the app

* Large size 2
High probability

Computation stack for the decades to come

Network

Encrypted output

|

Genome Analytics
data Application

Micro-container

* Thin layer for running
applications

* Trusted hardware

* Formal guarantees for
defense against
* Third party attacks
* Internal bugs in the app

Design Contrast

Network
m Encrypted output Encrypted output

/4 / \ :
Gednome Analytics Other Genome Analytics
a2 Application Apps data Application
_ J Micro-container
- Operating System |
- Hypervisor
4] "I_'
Hardware =
r‘wll

Building the components of this stack

Network

New Applications [Arxiv’18], [ICDCS'19]
Secure Computation [ccs'13]

Analysis & hardening

[PLDI’14], [FSE’15], [NDSS'19], [CCS’20]

Rich functionality [NDss'17], [Usenix’22]

Formal verification [Usenix Security’20]

Encrypted output

Genome Analytics
data Application

Micro-container

Attacks & Defenses [AsiaCCS’16] [CCS'21]

Trusted Computing Primitives
[TR’15], [Eurosys’20]

Practical Relevance: Initial Adoption

New Applications
Microsoft, Largest Asia-Pacific ISP
Secure Computation

SAP Labs
Analysis & hardening
Dexecure

Rich functionality

Anglave, Anquan, Community
Formal verification
Intel, Google, Microsoft, Anglave

Attacks & Defenses

Intel, Community

Network

Encrypted output

Genome Analytics
data Application

Micro-container

Trusted Computing Primitives
Qualcomm, Seagate, Baidu, Community

15t Component of this stack

Trusted Computing Primitives
[TR’15], [Eurosys’20]

Root of trust Hardware

Trusted Execution Environments (TEEs)

Earlier Generation (e.g., ARM TrustZone) Current Generation (e.g., Intel SGX)

4) Small
pieces of
Sensitive user-code

Application Ring 3
\ % Ring 0 -2 -
) Private
’1|-an °'||.,f_' < > Memory
Trusted
TI] - Untrusted Tl-l
CPU CPU

10

Inflexible Design & Closed Implementation
* TEEs in commercial hardware: Intel SGX, ARM TrustZone, AMD SEV

* One particular design point in the space
* Intel SGX — small server/desktop apps (e.g., DRM, cryptography)
« ARM TZ — vendor-provisioned mobile apps (e.g., fingerprint, ledger)
 AMD SEV - full VM isolation only (e.g., cloud computing)

* Implemented on closed-source hardware
* Slow iteration dictated by a company
* Adding new features/defenses is cumbersome

Limitations of Commercial TEEs

Small
pieces of
user-code

Ring 0 -2
< Private

Ring 3

TP

l—_:. > Memory
-/ I TI 1 Trusted
CPU - Untrusted

Binary Compatibility For SGX Enclaves [arXiv’20] 12

Better TEES

Private

* Main Observation: Memory

- Physical memory isolation
- Simpler ways to achieve

Sensitive
Application

e Similar abstraction to Intel’s TEE |

* Novelty: Designed to maintain
- Compatibility
- Performance

PodArch: Protecting Legacy Applications with a Purely Hardware TCB [TR’15] CPU
Keystone: An Open Framework for Architecting TEEs [EuroSys’20]

Focus on commercial TEEs (e.g., Intel SGX),
since they are widely available

2"d component of this stack

New Appllcatlons_[Arxiv'ls], [ICDCS’19] Encrypted output
Secure Computation [ccs'13]

Analysis & hardening ~50K Genome Analytics
[PLDI’14], [FSE’15], [NDSS'19], [CCS'20] data

Application

Rich functionality noss'17, [Usenix’22] Micro-container

VPErvISor

Formal verification [Usenix’20]

Attacks & Defenses [AsiaCCS’16, CCS'21]

Trusted Computing Primitives o-||,fJ
[TR’15], [Eurosys’20] Root of trust Hardware .=o

‘T

15

Adding Expressiveness to Commercial TEES

Mini OS

Ring 3

Ring 0 -2
Private
_?
rI:T > Memory
1 I Trusted
CPU - Untrusted

16

Code Size & Expressiveness Trade-off

N

Size

~1MLOC

~100KLOC

~KLOC

>

Expressiveness

17

Challenge I: Expressiveness

Delegate rather than emulate

. App“cation .

18

Building micro-container abstractions for TEEsS

‘ Application Logic ‘
Compatible Interface -(Small
. pieces of
‘ Delegation Code H Checks ‘ user-code
_ Ring 3
| - o
Linux User-level Process
- °1|.r s
Jir iy
Panoply: Low-TCB Linux Applications With SGX Enclaves [NDSS'17] 19

CPU

Challenge II: Delegation with isolation

* Two memory model:
- private and public memory

* Process abstraction breaks
- locks are in public memory
- shared memory for processes
- passing data to system calls

Private
Memory

/
/

-

.

Sensitive

Application

J

I,
=e
rlu'-n

CPU

20

Expressiveness Example: Fork

Fork Semantics:
- Assigns new process id
- Makes a memory replica

How to maintain fork
semantics if the OS
cannot access
private memory?

-
Parent

Process

_

N R
Child

Process
J A Y,

ID: 24

ID: 100

Vv

Operating
System

Physical Memory

21

Expressiveness Example: Delegating Fork

 Creating child process and child micro-container

Parent Container Child Container

Micro-container
Fork

* Child enclave has a clean memory state

22

Expressiveness Example: Achieving Fork Semantics

* Mirroring parent’s memory in child micro-container
» After the fork call, before resuming execution

Parent Container h 4 Child Container

~
Stackj Heapj Dataj Stackj Heapj Dataj
\
i -
Y

23

Expressiveness: Supporting POSIX APIs

Core Services

Process Creation and Control 5
Signals 6
Timers 5
File and Directory Operations 37
Pipes 4
C Library (Standard C) 66
T CahiraETace 40
Thread Extensions

Thread Creation, Control, 17
and Cleanup
Thread Scheduling 4
Thread Synchronization 10
Signal Delivery 2

3

Signal Handling

Real-time Extensions

Real-Time Signals

Clocks and Timers

4
1
Semaphores 2
Message Passing 7

6

Shared Memory
Asynchronous and 29
Synchronous I/0

Memory Locking Interface 6

POSIX APIs

Supported for
Commodity Linux Apps

24

Micro-contaliners execute TEE use-cases

4 N

- O\

H20

~

/

ANONYMITY
PROTOCOLS

Performance is comparable to

WEBSERVERS

-
FreeTDS

.

~

/

DATABASE
CLIENTS

Importing a mini-OS

-

.

~

Open
Jsi.

/

CRYPTOGRAPHIC

LIBRARIES

25

Minimize Trust to 20,000 lines of code

. A
Size
~1MLOC
~100KLOC
~KLOC
>
SN .
A @ 3 & c/a" & be/(i\“ Expressiveness
¥ sV & ¥ &P P G S Q¥
O S & c,&\(\@ I\ e;\g’o
\2 T 26

Adoption of the Delegation Approach

Panop]_y < |nte|> =. Microsoft §§

My Work Intel Microsoft Baidu Google
SGX Protected OpenEnclave Rust SGXSDK Asylo

Fi%e System

Early Late August Jan May
Dec 2016 Dec 2016 2017 2018 2018

27

3'd component of this stack

Micro-container

Formal verification [usenix’20]

-
Root of trust Hardware rI:o

Example: What is the damage via OS interface?
1 FILE*[fd = fopen(fname, mode);] Open the vote file

> [if (fd == NULL) {] Failed to open the

3 errnum = errno, vote file

4 if (errnum == EINVAL)

5 fd = fopen (fname, “a”);

6 if (errnum == ENOENT))

. if (fname == NULL) | Create new file-é Untrusted] Encrypted
3 fname = “vote.log”; overwrite previous vote AP Filesystem
9 fd = create_log(fname);

10 if (errnum == EINTR) -

11 fd = fopen(fname, mode);

12}

13 if (fd)

14 cnt =[fwrite(buf, 1, len, fd);] Rapipearttiewaitesequence
15 return cnt;

BesFS: A POSIX Filesystem for Enclaves with a Mechanized Safety Proof [Usenix Security'20] »

Attacks are possib

10 uint32_t mode = 0;
11 Fint e resSHilt=

e in delegation frameworks

9int enc_untrusted_open (const char xpath_name,

int flags) {

fopen: Google Asylo

12 sgx_status_t status = ocall_enc_untrusted_open (&result,

path _name, flags, mode);

13 Jif (status != SGX_SUCCESS)] {
14 [errno = EINTR;]
15 return -1;

16 }

17 return result;

18}

7static int sgx_ocall_open(void x pms) {

“+ 7

fopen: Intel SDK

Sstatic SGX_FILEx sgx_fopen_internal

6 (const charx filename, const charx mode)

8 ms_ocall_open_t * ms = (ms_ocall_open_t x)

9 int ret:

10 ODEBUG (OCALL_OPEN, ms) ; 7
11 ret = INLINE SYSCALL(open, ...); 8
12 return IS_ERR(ret)?unix_to_Pal_error(ERRNO(ret)):ret‘ lg

13§

fopen: Graphene-SGX

11
12
13}

{
protected_fs_filex file = NULL;

i i ==_NULL || mode == NULL) ({
errno = EINVAL;
return NULL;

}

A Formal Verification Approach:
How to scale to POSIX?

The scalability challenge:

- Specification for safe behavior
for the entire POSIX API

- Proving safe implementation
- entire libc (glibc, musl)
- filesystem (ext4)

31

Designing Scalable Specification:
BesFS Interface

e Our Approach
* 15 core APIs: e.g., open, close, read, write
* Allow to execute any sequence of these while maintaining safety property

e Can be composed to express higher-level interfaces
e e.g.,, fwrite can be composed with write and fstat
* Created 22 auxiliary APIs witnessed in applications

32

BesFS Highlights

4625 lines in Coq Not over restrictive Helped in eliminating
167 lemmas Supports all applications bugs (from Panoply, Intel
(< 1.5K in C code) from Panoply (& more) SDK, Google SDK)

Total 31 tested

Towards Next Generation Computation Stack

Network

New Applications [Arxiv’18], [ICDCS'19]
Secure Computation [ccs'13]

Analysis & hardening

[PLDI’14], [FSE’15], [NDSS'19], [CCS’20]

Rich functionality [NDSS'17], [Usenix "22]

Formal verification [Usenix’20]

Encrypted output

Genome Analytics
data Application

Micro-container

Attacks & Defenses [AsiaCCS’16, CCS'21]

Trusted Computing Primitives
[TR’15], [Eurosys’20]

Research Directions

New Security Primitives

Apps

Better
Isolation
Designs

Improving
TEEs

Micro-container

Impact
e OperaingSystem

/ Analysis
over entire

trusted Verified TEE
code Design Blocks Hardware 111

Customizable TEEs

* A framework that provides building blocks of TEEs

* The platform provider and the enclave developer “customizes” the TEE

Common

Threat Model
Base

Features

Framework

Compatible
Hardware

TEE Software

36

& Keystone

A software framework for TEEs on RISC-V
No micro-architectural changes

Minimal added hardware

Keystone Workflow for Custom|zab\e TEEs

' Provisioning Development
® O Keystone @ Keystone & ,
‘ Developer
; Customize | Customizel =
- Platform L S
Provider Sl Application
' Libraries

Hardwaref

Hardware
Manufacturer

38

Research Goals for Future TEE Platforms

_ New Security Primitives
 Modular TCB, easy to reduce and verify

* Binary compatibility with legacy
applications

* Enable support for various backend
hardware platforms

* Evolve to better hardware designs for TEE
independently of the software

Verified TEE
Design Blocks Illlll

Hardware e

ETH:zurich

% SECTRS

Secure & Trustworthy
Systems Group

Shweta Shinde
Assistant Professor
shweta.shivajishinde@inf.ethz.ch

ETH Zurich
Department of Computer Science

y @shw3ta_shinde

https://shwetashinde.org
https://www.sectrs.ethz.ch

https://shwetashinde.org/
https://www.sectrs.ethz.ch/
https://twitter.com/shw3ta_shinde

