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Microkernels are rising again

• Achieves good extensibility, security, and 
fault isolation

• Succeeds in safety-critical scenarios 
(Airplane, Car)

• For more general-purpose applications
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Monolithic Kernel and Microkernel
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Microkernel’s philosophy:
Moving most OS components into isolated user processes



Performance and Isolation Trade-off

• Function Call -> Inter-Process Communication (IPC)

• Overhead of IPC：Direct cost and indirect cost
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Goal: Both Ends

• Harmonize the tension between Performance 
and Isolation in microkernels

– Reducing the IPC overhead

– Maintaining the isolation guarantee
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IPC IS THE ACHILLE’S HEEL OF 
MICROKERNELS

IPC Latency

Microkernel
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Each IPC has to involve the kernel

PT Switch Other Logic PT Switch

Costs
Syscall + Sysret 157 cycles
Two PT switches 372 cycles
Other logics ~150 cycles

Total ~680 cycles

The involvement of kernel
brings huge direct costs

Direct Cost
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IPC also causes indirect costs

The sources of indirect costs
► Pipeline
► Different levels caches
► TLB structures

Indirect costs affect the performance of user
processes

Indirect Cost
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An experiment to show the indirect costs
Three processes: a client, an encryption server and a KV store
Three configurations:

Client Encrypt
Server KV Store

Delay Call Delay Call

Client Encrypt
Server KV Store

IPC IPC

Baseline

Delay

IPC

Client Encrypt
Server KV Store

Func Call Func Call
Same virt space

Same virt space

Diff virt spaces

Indirect Cost
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Name i-cache d-cache L2 cache L3 cache i-TLB d-TLB
Baseline 15 10624 13237 43 8 17
Delay 15 10639 13258 43 9 19
IPC 696 27054 15974 44 11 7832

• Affect architectural structures
– Measure architectural pollution using Intel PMU

– Count events for doing 512 operations

Indirect Cost



Previous Solutions
• A long line of optimizations in the last 30 years

– LRPC (SOSP’ 89)、L4 (SOSP’ 95)、seL4 fastpath (SOSP’ 09)、dIPC (EuroSys’
17) …

– Try to mitigate the effect of kernel involvement: Bypassing scheduler,
Reusing states, etc.

– Most are software-based solutions and still have large overhead

• But the relative latency of IPC gets larger when hardware
becomes faster
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Latency Monolithic Kernel Microkernel Ratio
30 years ago 21 μs 114 μs 4.8 X
Modern CPU 0.049 μs 0.5 μs 10.2 X



SkyBridge: Fast and Secure Inter-Process
Communication for Microkernels
EuroSys 2019
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: a fast and secure IPC facility for
microkernels.
1. Direct IPC path without the kernel.
2. Maintain the same level of security as the

traditional IPC
3. Easily integrated into existing microkernels.

Performance improvement
► Mircobenchmarks: 1.49X – 19.6X speedup for IPC
► Real Apps: 81.9% – 9.59X improvement for SQLite 3.0

SkyBridge

System Overview
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An advanced feature for hardware virtualization
1. Hardware functionality provided by Intel (with VMFUNC 

instruction)
2. Select an EPT from a list (configured by the hypervisor)
3. No trap into the hypervisor

Performance of VMFUNC
1. Cost 136 cycles on an Intel Skylake machine
2. Do not need to flush TLB

EPT Switching: VMFUNC
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gPT translates GVA to GPA
► Controlled by the guest

EPT translates GPA to HPA
► Controlled by the hypervisor

Guest virtual 
address
(GVA)

guest physical 
address
(GPA)

host physical address
(HPA)

gPT
(guest page table)

EPT
(Extended page table)

Two Kinds of Address Translations
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Kernel

Trampoline

Client
PT Client PT

Client EPT

Client
PT Server PT

Server EPT

Func

ServerClient

Trampoline

Register

General Workflow
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Kernel

Client
PT Client PT

Client
PT Server PT

Client EPT Server EPT

Trampoline VMFUNC Func

ServerClient

Trampoline

1: instrcutionA; // Translated using client PT
2: vmfunc(0x0, 0x1); // Func ID is 0x0, switch to server EPT
3: instructionB; // Translated using server PT

General Workflow
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1. Virtualization overhead

2. How to efficiently leverage VMFUNC

3. Faking VMFUNC attacks

TrampolineTrampoline VMFUNC

Microkernel
Costly VMExits

Guest VA Host PA
Address Translation

Two-level Address Translation

Hypervisor

Func

Challenges
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Efficient self-virtualization

Lightweight virtual address switch

Secure trampoline

Evaluation

Outline
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Dune approach[1]
► Syscall = VMExits
► Modifying microkernels

Microkernel

Commercial Hypervisor

Dune
Processes

Microkernel/Dune

Commercial hypervisor
► A large number of costly VMExits
► Expensive two-level translation

Normal
Processes

[1] Dune: Safe User-level Access to Privileged CPU. Belay A, Bittau A, Mashtizadeh A, et al. OSDI. 2012

How to Use Hardware Virtualization
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Microkernel

Hardware

Boot Kernel

Self-virt
Module

Efficient Self-virtualization
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Microkernel

Hardware

Root Mode

Non-root Mode

Self-virt
Module

RootKernel EPT
Management

VMExit
Handling

SubKernel

Efficient Self-virtualization
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VMExit Handling
► Allow Subkernel to handle most hardware events (external

interrupts and exceptions)
► Allow Subkernel to execute privileged instructions (e.g., HLT)
► ZERO VMExits in our evaluation

EPT for Subkernel
► One-to-one GPA->HPA mapping
► Using Hugepages to reduce translation and TLB missing overhead

Efficient Self-virtualization
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Efficient self-virtualization

Lightweight virtual address switch

Secure trampoline

Evaluation

Outline
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SeCage[1] (CCS’15)
► Put different processes into the same virtual address space
► Leverage different EPTs to isolate them
► Use VMFUNC to switch EPTs

Process 0 Process 1 Process 2

EPT 0 EPT 1 EPT 2

Virtual Address SpaceCR
3

VMFUNC VMFUNC

[1] Thwarting memory disclosure with efficient hypervisor-enforced intra-domain isolation. Liu Y, et al. CCS. 2015.

Traditional Approach
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SeCage (CCS’15)
► Different processes may use the same virtual address ranges
► Carefully organize the virtual address space to prevent any

possible overlap
► That requires tedious engineering efforts

Traditional Approach
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1: instructionA; // Translated using Client-CR3
2: vmfunc(0x0, 0x1); // Switch to EPTP-S
3: instructionB; // Translated using Server-CR3

Client-
CR3 Client-CR3

Client EPT

Client-
CR3 Server-CR3

Server EPT

Trampoline
Client-CR3

Client

Server-CR3

Server

EPT Pointer

VMCS EPTP-C
EPTP-S

0
0
…
0

EPTP List

One VMFUNC instruction changes
the virtual space in user level

Lightweight Virtual Address Switch
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Efficient self-virtualization

Lightweight virtual address switch

Secure trampoline

Evaluation

Outline
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Trampoline Trampoline

Server Funcs

Faking VMFUNC
Sensitive Funcs

Client Server

Faking VMFUNC Attack
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Kernel

Process

Register

Page
s

Scan

Ø Replace all illegal VMFUNC to semantically equivalent instructions

Ø Replacement strategy is based on x86 variable-length instruction encoding 

ID Overlap Case Rewriting Strategy

1 Opcode=VMFUNC Replace VMFUNC with 3 NOP instructions

2 Mod R/M=0x0F Push/pop used register; use new register

3 SIB=0x0F Push/pop used register; use new register

4 Displacement=0x0F Compute displacement value before the instruction

5 Immediate=0x0F Apply instruction twice with different immediates to get
equivalent effect

Jump-like instruction: modify immediate after moving this
instruction

Secure Trampoline
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Program Average Code Size (KB) VMFUNC Count

SPECCPU 2006 (31 Apps) 424 0

PARSEC 3.0 (45 Apps) 842 0

Nginx v1.6.2 979 0

Apache v2.4.10 666 0

Memcached v1.4.21 121 0

Redis v2.8.17 729 0

Vmlinux v4.14.29 10,498 0

Linux Kernel Modules v4.14.29 (2,934 Modules) 15 0

Other Apps (2,605 Apps) 216 1 (in GIMP-2.8)

Secure Trampoline
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Efficient self-virtualization

Lightweight virtual address switch

Secure trampoline

Evaluation

Outline
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Baseline: state-of-the-art microkernels
□ seL4, Fiasco.OC, Google Zircon

Platform:
□ CPU:  Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz,

4 cores and 8 hardware threads
□ Memory: 2 * 8GB DDR4

Benchmarks
□ Synthetic: KVS
□ Real-world: SQLite 3.0

Evaluation
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Harmonizing Performance and Isolation in 
Microkernels with Efficient Intra-kernel 
Isolation and Communication
(USENIX ATC 2021) 42



PKU Brings New Opportunities
• PKU: Protection Key for Userspace (aka. 

MPK)
– Assign each memory page one PKEY (i.e., 

domain ID)

– A new register PKRU stores read/write 
permission
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Efficient Intra-Process Isolation

• ERIM [Security’ 19] & Hodor [ATC’ 19] (Intel PKU)

– More efficient

– Same address space

– Domain switch only takes 28 cycles
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Hardware

Microkernel

Process IPC Sched

App App FS MM Net Drv

System Servers

… Intel PKU

Intra-Process Isolation + Microkernel
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Microkernel

App

Server-1

Server-2

Server-3

…

Isolate different system servers in a single process.

Isolated 
domains

Just as traditional IPCs

Design Choice #1
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Microkernel

Let’s get more aggressive!

Server-1

Server-2

Server-3

…

App-1

Server-1

Server-2

Server-3

…

App-2

Drawbacks
1. Update Server mapping is costly

2. IPC connection is also costly

3. Less flexibility for applications
on address space and using PKU

Design Choice #2
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An Observation on Intel PKU

• A misleading name
– Protection Key for Userspace

• It still takes effect when in kernel (ring-0)
– The “Userspace” means user-accessible 

memory

– U/K bit in PTE
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Hardware

Microkernel

App App FS MM Net Drv

System Servers

… Intel PKU

UnderBridge: Sinking System Servers
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App App

• Build execution domains in the kernel page table

Design Choice #3: UnderBridge



Execution Domain

• Execution domain 0 is for the microkernel
– Use memory domain 0
– Can access all the memory

• Others own a private memory domain
– A private MPK memory domain ID

• Shared memory
– Allocate a free MPK memory domain ID 
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IPC Gate

• Connect two servers
– Generated by the microkernel
– Resides in memory domain 0 (execute-only for servers)

• Transfer control flow during IPC invocations
– context switch and domain switch

• Connect the microkernel and servers
– System calls -> IPC gates
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Server Migration

• The number of execution domain is limited
– Hardware only provides 16 memory domains

– Time-multiplexing is expensive

• Move servers between user and kernel space
– Disjoint virtual memory regions

– Runtime migration
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Privilege Deprivation

• In-kernel servers have supervisor privilege
– Can affect the whole system if compromised
– CFI (with binary scanning) incurs runtime overhead
– Binary rewriting only is infeasible

• Prevent servers to execute privilege instructions
– Add a tiny secure monitor in hypervisor mode
– For instructions rarely execute: VMExits
– For instructions that frequently required: Rewriting
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Cross-server IPC Round-Trip 
Latency
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SQLite Throughput under YCSB-A
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Conclusion

• IPC is the Achille’s heel of microkernels.

• SkyBridge
– Bypassing the OS kernel by leveraging VMFUNC
– Strong isolation via EPT domains

• UnderBridge
– Putting deprivileged servers back to kernel and isolate them with Intel PKU
– Faster domain switch
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Thanks!


