
Better Foundations
for Secure Software using
Trusted Hardware & Verification

Shweta Shinde
ETH Zürich

Security breaches are on the rise

2

37 billion records exposed
through data breaches

in 2020

Average of 1-25 Bugs per 1000 lines of code

Operating System (Linux Kernel)
27 Million Lines

Hypervisor (XEN)
0.5 Million Lines

3
(Year) (Year)

N
um

be
r o

f
Se

cu
rit

y
Bu

gs

N
um

be
r o

f
Se

cu
rit

y
Bu

gs

1999
2019

2019
2007

The new normal: Hundreds of bugs a year in Linux

Current computing stack is prone to attacks

4

• Encryption or other
sophisticated
techniques at the
application layer

• Bug in lower layers à
Compromise the
security of the app

• Large size à
High probabilityHardware

Analytics
Application

Hypervisor

Operating System

Other
Apps

Genome
data

Encrypted output
Network

27M Lines

0.5M Lines

~50K Lines

Computation stack for the decades to come

5

Root of trust

Analytics
Application

Hypervisor

Operating System

Other
Apps

Genome
data

Micro-container

27M Lines

0.5M Lines

~20K Lines

Encrypted output
Network

~50K Lines

• Thin layer for running
applications

• Trusted hardware

• Formal guarantees for
defense against
• Third party attacks
• Internal bugs in the app

Hardware

Design Contrast

6

Hardware

Analytics
Application

Hypervisor

Operating System

Other
Apps

Genome
data

Encrypted output
Network

27M

0.5M

Root of trust

Analytics
Application

Hypervisor

Operating System

Other
Apps

Genome
data

Micro-container~20K

Encrypted output
Network

~50K

Hardware

Building the components of this stack

7

Root of trust

Analytics
Application

Hypervisor

Operating System

Other
Apps

Genome
data

Micro-container~20K

Encrypted output
Network

~50K

Hardware

New Applications [Arxiv’18], [ICDCS’19]

Secure Computation [CCS’13]

Analysis & hardening
[PLDI’14], [FSE’15], [NDSS’19], [CCS’20]

Rich functionality [NDSS’17], [Usenix’22]

Formal verification [Usenix Security’20]

Attacks & Defenses [AsiaCCS’16] [CCS’21]

Trusted Computing Primitives
[TR’15], [Eurosys’20]

Practical Relevance: Initial Adoption

8

Root of trust

Analytics
Application

Hypervisor

Operating System

Other
Apps

Genome
data

Micro-container~20K

Encrypted output
Network

~50K

Hardware

New Applications
Microsoft, Largest Asia-Pacific ISP
Secure Computation
SAP Labs
Analysis & hardening
Dexecure

Rich functionality
Anqlave, Anquan, Community
Formal verification
Intel, Google, Microsoft, Anqlave

Attacks & Defenses
Intel, Community

Trusted Computing Primitives
Qualcomm, Seagate, Baidu, Community

1st Component of this stack

9

Root of trust

Analytics
Application

Hypervisor

Operating System

Other
Apps

Genome
data

Micro-container~20K

Encrypted output
Network

~50K

Hardware

New Applications [Arxiv’18], [ICDCS’19]

Secure Computation [CCS’13]

Analysis & hardening
[PLDI’14], [FSE’15], [NDSS’19], [CCS’20]

Rich functionality [NDSS’17],], [Usenix’22]

Formal verification [Usenix Security’20]

Attacks & Defenses [AsiaCCS’16] [CCS’21]

Trusted Computing Primitives
[TR’15], [Eurosys’20]

Trusted Execution Environments (TEEs)
Earlier Generation (e.g., ARM TrustZone) Current Generation (e.g., Intel SGX)

10
CPU

Operating
System

Other
ApplicationsSensitive

Application
Operating System / Hypervisor

Public
Memory

Small
pieces of
user-code

Ring 0 - 2

Ring 3

Trusted
Untrusted

Private
Memory

Other
Applications

CPU

Inflexible Design & Closed Implementation

• TEEs in commercial hardware: Intel SGX, ARM TrustZone, AMD SEV

• One particular design point in the space
• Intel SGX – small server/desktop apps (e.g., DRM, cryptography)
• ARM TZ – vendor-provisioned mobile apps (e.g., fingerprint, ledger)
• AMD SEV – full VM isolation only (e.g., cloud computing)

• Implemented on closed-source hardware
• Slow iteration dictated by a company
• Adding new features/defenses is cumbersome

11

CPU

Limitations of Commercial TEEs

Operating System / Hypervisor

Small
pieces of
user-code

Ring 0 - 2

Ring 3

Trusted
Untrusted

Other
Applications

12

Expressiveness &
Compatibility

Public
Memory

Private
Memory

Hard Limit
on size

Microarchitectural
Side-channels

Binary Compatibility For SGX Enclaves [arXiv’20]

Better TEEs

• Main Observation:
- Physical memory isolation
- Simpler ways to achieve

• Similar abstraction to Intel’s TEE

• Novelty: Designed to maintain
- Compatibility
- Performance

13

Operating System / Hypervisor

Sensitive
Application

Private
Memory

Other
Applications

CPU

Public
Memory

PodArch: Protecting Legacy Applications with a Purely Hardware TCB [TR’15]
Keystone: An Open Framework for Architecting TEEs [EuroSys’20]

Focus on commercial TEEs (e.g., Intel SGX),
since they are widely available

14

2nd component of this stack

15

Root of trust

Analytics
Application

Hypervisor

Operating System

Other
Apps

Genome
data

Micro-container~20K

Encrypted output
Network

~50K

Hardware

New Applications [Arxiv’18], [ICDCS’19]
Secure Computation [CCS’13]

Analysis & hardening
[PLDI’14], [FSE’15], [NDSS’19], [CCS’20]

Rich functionality [NDSS’17], [Usenix’22]
Formal verification [Usenix’20]

Attacks & Defenses [AsiaCCS’16, CCS’21]

Trusted Computing Primitives
[TR’15], [Eurosys’20]

CPU

Adding Expressiveness to Commercial TEEs

Operating System / Hypervisor

Application

Ring 0 - 2

Ring 3

Trusted
Untrusted

Other
Applications

16

Mini OS
Public
Memory

Private
Memory

Reimplement OS
functionality

Code Size & Expressiveness Trade-off

17

Expressiveness

Size

~KLOC

~100KLOC

~1MLOC

Sys
call

Threads

Eve
nt M

gm
t

Fo
rk/

 execSysc
all

Support subset of
the functionality

Scone [OSDI’16]
Ryoan [OSDI’16]

Re-implement the OS functionality
Haven [OSDI’14]
Graphene-SGX [ATC’17]

Sys
call

Threads
Sys

call

Threads

Eve
nt M

gmt

?

Challenge I: Expressiveness

18

Application

Filesystem

On-
demand

threading

Multi-
processing

Event
Handling

Delegate rather than emulate

Building micro-container abstractions for TEEs

19

Application Logic

Delegation Code Checks

libc.so Non-enclave
Logic

Untrusted
TEE Lib

Linux User-level Process

Compatible Interface Small
pieces of
user-code

Ring 3

Operating
System

Ring 0 - 2

CPUPanoply: Low-TCB Linux Applications With SGX Enclaves [NDSS'17]

Challenge II: Delegation with isolation

• Two memory model:
- private and public memory

• Process abstraction breaks
- locks are in public memory
- shared memory for processes
- passing data to system calls

20

Operating System / Hypervisor

Sensitive
Application

Private
Memory

Other
Applications

CPU

Public
Memory

Expressiveness Example: Fork

21

Parent
Process

Child
Process

Operating
System

Replicate Pages
Assign Proc ID

Parent Memory

Child Memory

Physical Memory

ID: 24 ID: 100

• Fork Semantics:
- Assigns new process id
- Makes a memory replica

• How to maintain fork
semantics if the OS
cannot access
private memory?

Expressiveness Example: Delegating Fork
• Creating child process and child micro-container

22

Micro-container
Fork OS PID Mgmt

Parent Container Child Container

Parent Process Child Process

• Child enclave has a clean memory state

OS

Child Container

Expressiveness Example: Achieving Fork Semantics

• Mirroring parent’s memory in child micro-container
• After the fork call, before resuming execution

23

Parent Container

Child Process

Stack

Parent
Process

Sealed
Data

Heap Data Stack Heap Data

Expressiveness: Supporting POSIX APIs

24

Core Services
Process Creation and Control 5

Signals 6

Timers 5

File and Directory Operations 37

Pipes 4

C Library (Standard C) 66
I/O Port Interface and Control 40

Real-time Extensions
Real-Time Signals 4

Clocks and Timers 1

Semaphores 2

Message Passing 7

Shared Memory 6
Asynchronous and
Synchronous I/O

29

Memory Locking Interface 6
Thread Extensions

Thread Creation, Control,
and Cleanup

17

Thread Scheduling 4

Thread Synchronization 10

Signal Delivery 2

Signal Handling 3

POSIX APIs
Supported for

Commodity Linux Apps

Micro-containers execute TEE use-cases

ANONYMITY
PROTOCOLS

WEBSERVERS DATABASE
CLIENTS

CRYPTOGRAPHIC
LIBRARIES

Performance is comparable to
importing a mini-OS

25

Minimize Trust to 20,000 lines of code

26

Expressiveness

Size

~KLOC

~100KLOC

~1MLOC

Sys
call

Threads

Eve
nt M

gm
t

Fo
rk/

 execSysc
all

Micro-
containers

Sys
call

Threads
Sys

call

Threads

Eve
nt M

gmt

ü 254 APIs
ü 20KLOC

Adoption of the Delegation Approach

27

Early
Dec 2016

Intel
SGX Protected
File System

Late
Dec 2016

August
2017

Microsoft
OpenEnclave

May
2018

Google
Asylo

My Work

Jan
2018

Baidu
Rust SGX SDK

3rd component of this stack

28

Root of trust

Analytics
Application

Hypervisor

Operating System

Other
Apps

Genome
data

Micro-container~20K

Encrypted output
Network

~50K

Hardware

New Applications [Arxiv’18], [ICDCS’19]
Secure Computation [CCS’13]

Analysis & hardening
[PLDI’14], [FSE’15], [NDSS’19], [CCS’20]

Rich functionality [NDSS’17], [Usenix’22]

Formal verification [Usenix ’20]

Attacks & Defenses [AsiaCCS’16, CCS’21]

Trusted Computing Primitives
[TR’15], [Eurosys’20]

29

Enclave
Application

Untrusted OS

Untrusted
API

BesFS: A POSIX Filesystem for Enclaves with a Mechanized Safety Proof [Usenix Security'20]

Example: What is the damage via OS interface?
1 FILE* fd = fopen(fname, mode);
2 if (fd == NULL) {
3 errnum = errno;
4 if (errnum == EINVAL)
5 fd = fopen (fname, “a”);
6 if (errnum == ENOENT)
7 if (fname == NULL)
8 fname = “vote.log”;
9 fd = create_log(fname);
10 if (errnum == EINTR)
11 fd = fopen(fname, mode);
12 }
13 if (fd)
14 cnt = fwrite(buf, 1, len, fd);
15 return cnt;

Open the vote file

Register the vote

Failed to open the
vote file

Create new file à
overwrite previous vote

Tamper the vote sequence

Encrypted
Filesystem

Attacks are possible in delegation frameworks

30

fopen: Graphene-SGX

fopen: Intel SDK

fopen: Google Asylo

A Formal Verification Approach:

31

Standard Specification
e.g., ~300 APIs

Implementation
e.g.,
100K -
1Mil

BesFS
Speci-

fication

How to scale to POSIX?

The scalability challenge:

- Specification for safe behavior
for the entire POSIX API

- Proving safe implementation
- entire libc (glibc, musl)
- filesystem (ext4)

Designing Scalable Specification:
BesFS Interface

• Our Approach
• 15 core APIs: e.g., open, close, read, write
• Allow to execute any sequence of these while maintaining safety property

• Can be composed to express higher-level interfaces
• e.g., fwrite can be composed with write and fstat
• Created 22 auxiliary APIs witnessed in applications

32

BesFS Highlights

33

4625 lines in Coq
167 lemmas

(< 1.5K in C code)

Not over restrictive
Supports all applications
from Panoply (& more)

Total 31 tested

Helped in eliminating
bugs (from Panoply, Intel

SDK, Google SDK)

Towards Next Generation Computation Stack

34

Root of trust

Analytics
Application

Hypervisor

Operating System

Other
Apps

Genome
data

Micro-container~20K

Encrypted output
Network

~50K

Hardware

New Applications [Arxiv’18], [ICDCS’19]

Secure Computation [CCS’13]

Analysis & hardening
[PLDI’14], [FSE’15], [NDSS’19], [CCS’20]

Rich functionality [NDSS’17], [Usenix ’22]

Formal verification [Usenix’20]

Attacks & Defenses [AsiaCCS’16, CCS’21]

Trusted Computing Primitives
[TR’15], [Eurosys’20]

Research Directions

35

Improving
TEEs

Better
Isolation
Designs

Microarch
side-

channels

Verification
/ Analysis

over entire
trusted

code

Impact

Verified TEE
Design Blocks

Verified
Applications

Hypervisor

Operating System

Other
Apps

Micro-container

Hardware

New Security Primitives

Micro-architecture

Customizable TEEs

36

• A framework that provides building blocks of TEEs
• The platform provider and the enclave developer “customizes” the TEE

TEE Software

Compatible
Hardware

Framework

Common
Base Threat Model Features

A software framework for TEEs on RISC-V

No micro-architectural changes

Minimal added hardware
37

Keystone Workflow for Customizable TEEs

Hardware
Manufacturer

Hardware

Provisioning

Platform
Provider

Development

Developer

Libs
App

Cloud
Deployment

Monitor
OS

User...

Software

Customize

Application
Libraries

Customize

38

Research Goals for Future TEE Platforms

• Modular TCB, easy to reduce and verify

• Binary compatibility with legacy
applications

• Enable support for various backend
hardware platforms

• Evolve to better hardware designs for TEE
independently of the software

39

Verified TEE
Design Blocks

Verified
Applications

Hypervisor

Operating System

Other
Apps

Micro-container

Hardware

New Security Primitives

Micro-architecture

Shweta Shinde
Assistant Professor
shweta.shivajishinde@inf.ethz.ch

ETH Zurich
Department of Computer Science

https://shwetashinde.org
https://www.sectrs.ethz.ch

@shw3ta_shinde

https://shwetashinde.org/
https://www.sectrs.ethz.ch/
https://twitter.com/shw3ta_shinde

