
Harmonizing Performance and
Isolation in Microkernels with New

Hardware

Zeyu Mi

IPADS, Shanghai Jiao Tong University

https://ipads.se.sjtu.edu.cn/pub/members/zeyu_mi

Microkernels are rising again

• Achieves good extensibility, security, and
fault isolation

• Succeeds in safety-critical scenarios
(Airplane, Car)

• For more general-purpose applications

2

Monolithic Kernel and Microkernel

3

Microkernel’s philosophy:
Moving most OS components into isolated user processes

Performance and Isolation Trade-off

• Function Call -> Inter-Process Communication (IPC)

• Overhead of IPC：Direct cost and indirect cost

4

App File
System

Disk
Driver

Microkernel

IPC

20%

40%

60%

80%

100%

Zircon seL4
w/ kpti

seL4
w/o kpti

IPC Cost
Real Work in Servers

Test Platform: Dell PowerEdge R640
（Intel Xeon Gold 6138 CPU）

Goal: Both Ends

• Harmonize the tension between Performance
and Isolation in microkernels

– Reducing the IPC overhead

– Maintaining the isolation guarantee

5

IPC IS THE ACHILLE’S HEEL OF
MICROKERNELS

IPC Latency

Microkernel

6

Each IPC has to involve the kernel

PT Switch Other Logic PT Switch

Costs
Syscall + Sysret 157 cycles
Two PT switches 372 cycles
Other logics ~150 cycles

Total ~680 cycles

The involvement of kernel
brings huge direct costs

Direct Cost

7

IPC also causes indirect costs

The sources of indirect costs
► Pipeline
► Different levels caches
► TLB structures

Indirect costs affect the performance of user
processes

Indirect Cost

8

An experiment to show the indirect costs
Three processes: a client, an encryption server and a KV store
Three configurations:

Client Encrypt
Server KV Store

Delay Call Delay Call

Client Encrypt
Server KV Store

IPC IPC

Baseline

Delay

IPC

Client Encrypt
Server KV Store

Func Call Func Call
Same virt space

Same virt space

Diff virt spaces

Indirect Cost

9

10

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

16-Bytes 64-Bytes 256-Bytes 1024-Bytes

Ti
m

e
(C

yc
le

s)

Key and Value Length (Bytes)

Baseline
Delay

IPC
IPC-CrossCore

67%

22%

Indirect Cost

11

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

16-Bytes 64-Bytes 256-Bytes 1024-Bytes

Ti
m

e
(C

yc
le

s)

Key and Value Length (Bytes)

Baseline
Delay

IPC
IPC-CrossCore

138%

90%

Indirect Cost

12

Name i-cache d-cache L2 cache L3 cache i-TLB d-TLB
Baseline 15 10624 13237 43 8 17
Delay 15 10639 13258 43 9 19
IPC 696 27054 15974 44 11 7832

• Affect architectural structures
– Measure architectural pollution using Intel PMU

– Count events for doing 512 operations

Indirect Cost

Previous Solutions
• A long line of optimizations in the last 30 years

– LRPC (SOSP’ 89)、L4 (SOSP’ 95)、seL4 fastpath (SOSP’ 09)、dIPC (EuroSys’
17) …

– Try to mitigate the effect of kernel involvement: Bypassing scheduler,
Reusing states, etc.

– Most are software-based solutions and still have large overhead

• But the relative latency of IPC gets larger when hardware
becomes faster

13

Latency Monolithic Kernel Microkernel Ratio
30 years ago 21 μs 114 μs 4.8 X
Modern CPU 0.049 μs 0.5 μs 10.2 X

SkyBridge: Fast and Secure Inter-Process
Communication for Microkernels
EuroSys 2019

14

: a fast and secure IPC facility for
microkernels.
1. Direct IPC path without the kernel.
2. Maintain the same level of security as the

traditional IPC
3. Easily integrated into existing microkernels.

Performance improvement
► Mircobenchmarks: 1.49X – 19.6X speedup for IPC
► Real Apps: 81.9% – 9.59X improvement for SQLite 3.0

SkyBridge

System Overview

15

An advanced feature for hardware virtualization
1. Hardware functionality provided by Intel (with VMFUNC

instruction)
2. Select an EPT from a list (configured by the hypervisor)
3. No trap into the hypervisor

Performance of VMFUNC
1. Cost 136 cycles on an Intel Skylake machine
2. Do not need to flush TLB

EPT Switching: VMFUNC

16

gPT translates GVA to GPA
► Controlled by the guest

EPT translates GPA to HPA
► Controlled by the hypervisor

Guest virtual
address
(GVA)

guest physical
address
(GPA)

host physical address
(HPA)

gPT
(guest page table)

EPT
(Extended page table)

Two Kinds of Address Translations

17

Kernel

Trampoline

Client
PT Client PT

Client EPT

Client
PT Server PT

Server EPT

Func

ServerClient

Trampoline

Register

General Workflow

18

Kernel

Client
PT Client PT

Client
PT Server PT

Client EPT Server EPT

Trampoline VMFUNC Func

ServerClient

Trampoline

1: instrcutionA; // Translated using client PT
2: vmfunc(0x0, 0x1); // Func ID is 0x0, switch to server EPT
3: instructionB; // Translated using server PT

General Workflow

19

1. Virtualization overhead

2. How to efficiently leverage VMFUNC

3. Faking VMFUNC attacks

TrampolineTrampoline VMFUNC

Microkernel
Costly VMExits

Guest VA Host PA
Address Translation

Two-level Address Translation

Hypervisor

Func

Challenges

20

Efficient self-virtualization

Lightweight virtual address switch

Secure trampoline

Evaluation

Outline

21

Dune approach[1]
► Syscall = VMExits
► Modifying microkernels

Microkernel

Commercial Hypervisor

Dune
Processes

Microkernel/Dune

Commercial hypervisor
► A large number of costly VMExits
► Expensive two-level translation

Normal
Processes

[1] Dune: Safe User-level Access to Privileged CPU. Belay A, Bittau A, Mashtizadeh A, et al. OSDI. 2012

How to Use Hardware Virtualization

22

Microkernel

Hardware

Boot Kernel

Self-virt
Module

Efficient Self-virtualization

23

Microkernel

Hardware

Root Mode

Non-root Mode

Self-virt
Module

RootKernel EPT
Management

VMExit
Handling

SubKernel

Efficient Self-virtualization

24

VMExit Handling
► Allow Subkernel to handle most hardware events (external

interrupts and exceptions)
► Allow Subkernel to execute privileged instructions (e.g., HLT)
► ZERO VMExits in our evaluation

EPT for Subkernel
► One-to-one GPA->HPA mapping
► Using Hugepages to reduce translation and TLB missing overhead

Efficient Self-virtualization

25

Efficient self-virtualization

Lightweight virtual address switch

Secure trampoline

Evaluation

Outline

26

SeCage[1] (CCS’15)
► Put different processes into the same virtual address space
► Leverage different EPTs to isolate them
► Use VMFUNC to switch EPTs

Process 0 Process 1 Process 2

EPT 0 EPT 1 EPT 2

Virtual Address SpaceCR
3

VMFUNC VMFUNC

[1] Thwarting memory disclosure with efficient hypervisor-enforced intra-domain isolation. Liu Y, et al. CCS. 2015.

Traditional Approach

27

SeCage (CCS’15)
► Different processes may use the same virtual address ranges
► Carefully organize the virtual address space to prevent any

possible overlap
► That requires tedious engineering efforts

Traditional Approach

28

1: instructionA; // Translated using Client-CR3
2: vmfunc(0x0, 0x1); // Switch to EPTP-S
3: instructionB; // Translated using Server-CR3

Client-
CR3 Client-CR3

Client EPT

Client-
CR3 Server-CR3

Server EPT

Trampoline
Client-CR3

Client

Server-CR3

Server

EPT Pointer

VMCS EPTP-C
EPTP-S

0
0
…
0

EPTP List

One VMFUNC instruction changes
the virtual space in user level

Lightweight Virtual Address Switch

29

Efficient self-virtualization

Lightweight virtual address switch

Secure trampoline

Evaluation

Outline

30

Trampoline Trampoline

Server Funcs

Faking VMFUNC
Sensitive Funcs

Client Server

Faking VMFUNC Attack

31

Kernel

Process

Register

Page
s

Scan

Ø Replace all illegal VMFUNC to semantically equivalent instructions

Ø Replacement strategy is based on x86 variable-length instruction encoding

ID Overlap Case Rewriting Strategy

1 Opcode=VMFUNC Replace VMFUNC with 3 NOP instructions

2 Mod R/M=0x0F Push/pop used register; use new register

3 SIB=0x0F Push/pop used register; use new register

4 Displacement=0x0F Compute displacement value before the instruction

5 Immediate=0x0F Apply instruction twice with different immediates to get
equivalent effect

Jump-like instruction: modify immediate after moving this
instruction

Secure Trampoline

32

Program Average Code Size (KB) VMFUNC Count

SPECCPU 2006 (31 Apps) 424 0

PARSEC 3.0 (45 Apps) 842 0

Nginx v1.6.2 979 0

Apache v2.4.10 666 0

Memcached v1.4.21 121 0

Redis v2.8.17 729 0

Vmlinux v4.14.29 10,498 0

Linux Kernel Modules v4.14.29 (2,934 Modules) 15 0

Other Apps (2,605 Apps) 216 1 (in GIMP-2.8)

Secure Trampoline

33

Efficient self-virtualization

Lightweight virtual address switch

Secure trampoline

Evaluation

Outline

34

Baseline: state-of-the-art microkernels
□ seL4, Fiasco.OC, Google Zircon

Platform:
□ CPU: Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz,

4 cores and 8 hardware threads
□ Memory: 2 * 8GB DDR4

Benchmarks
□ Synthetic: KVS
□ Real-world: SQLite 3.0

Evaluation

35

 0

 5000

 10000

 15000

 20000

seL4-SkyBridge

Fiasco.OC-SkyBridge

Zircon-SkyBridge

seL4 fastpath
Single Core

Fiasco fastpath

Single Core

ZirconSingle Core

seL4Cross Core

FiascoCross Core

ZirconCross Core

Ti
m

e
(c

yc
le

s)

VMFUNC
SYSCALL/SYSRET

context switch
IPI

message copy
schedule

others

SkyBridge

Single Core

Cross Core

IPC Performance

36

 0

 5000

 10000

 15000

 20000

seL4-SkyBridge

Fiasco.OC-SkyBridge

Zircon-SkyBridge

seL4 fastpath
Single Core

Fiasco fastpath

Single Core

ZirconSingle Core

seL4Cross Core

FiascoCross Core

ZirconCross Core

Ti
m

e
(c

yc
le

s)

VMFUNC
SYSCALL/SYSRET

context switch
IPI

message copy
schedule

others

19.6x

IPC Performance

37

 0

 5000

 10000

 15000

 20000

seL4-SkyBridge

Fiasco.OC-SkyBridge

Zircon-SkyBridge

seL4 fastpath
Single Core

Fiasco fastpath

Single Core

ZirconSingle Core

seL4Cross Core

FiascoCross Core

ZirconCross Core

Ti
m

e
(c

yc
le

s)

VMFUNC
SYSCALL/SYSRET

context switch
IPI

message copy
schedule

others

50x

IPC Performance

38

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

16-Bytes 64-Bytes 256-Bytes 1024-Bytes

Ti
m

e
(C

yc
le

s)

Key and Value Length (Bytes)

Baseline
Delay
IPC

IPC-CrossCore
SkyBridge

126%

34%

Performance of KVS

39

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

1-thread 2-thread 4-thread 8-thread

T
hr

ou
gh

pu
t (

op
s/

se
c)

Number of threads

seL4-st
seL4-mt

seL4-SkyBridge

SQLite xv6fs ramdis
k

seL4-st:
Multiple SQLite threads
One server thread

83%

53
%

Performance of SQLite 3.0

40

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

1-thread 2-thread 4-thread 8-thread

T
hr

ou
gh

pu
t (

op
s/

se
c)

Number of threads

seL4-st
seL4-mt

seL4-SkyBridge

SQLite xv6fs ramdis
k

seL4-st:
Multiple SQLite threads
One server thread

seL4-mt:
Multiple SQLite
threads Multiple server
threads

82%

43
%

Performance of SQLite 3.0

41

Harmonizing Performance and Isolation in
Microkernels with Efficient Intra-kernel
Isolation and Communication
(USENIX ATC 2021) 42

PKU Brings New Opportunities
• PKU: Protection Key for Userspace (aka.

MPK)
– Assign each memory page one PKEY (i.e.,

domain ID)

– A new register PKRU stores read/write
permission

43

Efficient Intra-Process Isolation

• ERIM [Security’ 19] & Hodor [ATC’ 19] (Intel PKU)

– More efficient

– Same address space

– Domain switch only takes 28 cycles

44

Hardware

Microkernel

Process IPC Sched

App App FS MM Net Drv

System Servers

… Intel PKU

Intra-Process Isolation + Microkernel

45

Microkernel

App

Server-1

Server-2

Server-3

…

Isolate different system servers in a single process.

Isolated
domains

Just as traditional IPCs

Design Choice #1

46

Microkernel

Let’s get more aggressive!

Server-1

Server-2

Server-3

…

App-1

Server-1

Server-2

Server-3

…

App-2

Drawbacks
1. Update Server mapping is costly

2. IPC connection is also costly

3. Less flexibility for applications
on address space and using PKU

Design Choice #2

47

An Observation on Intel PKU

• A misleading name
– Protection Key for Userspace

• It still takes effect when in kernel (ring-0)
– The “Userspace” means user-accessible

memory

– U/K bit in PTE

48

Hardware

Microkernel

App App FS MM Net Drv

System Servers

… Intel PKU

UnderBridge: Sinking System Servers

49

50

U
ser

Kernel

Dom-0
Microkernel

App

Dom-3
Server-3

Dom-1
Server-1

Dom-2
Server-2

App App

• Build execution domains in the kernel page table

Design Choice #3: UnderBridge

Execution Domain

• Execution domain 0 is for the microkernel
– Use memory domain 0
– Can access all the memory

• Others own a private memory domain
– A private MPK memory domain ID

• Shared memory
– Allocate a free MPK memory domain ID

51

Dom-0
Microkernel

Dom-1
Server-1

Dom-2
Server-2

IPC Gate

• Connect two servers
– Generated by the microkernel
– Resides in memory domain 0 (execute-only for servers)

• Transfer control flow during IPC invocations
– context switch and domain switch

• Connect the microkernel and servers
– System calls -> IPC gates

52

Dom-1
Server-1

Dom-2
Server-2

Dom-2
Server-2

Dom-0
Microkernel

Server Migration

• The number of execution domain is limited
– Hardware only provides 16 memory domains

– Time-multiplexing is expensive

• Move servers between user and kernel space
– Disjoint virtual memory regions

– Runtime migration

53

Privilege Deprivation

• In-kernel servers have supervisor privilege
– Can affect the whole system if compromised
– CFI (with binary scanning) incurs runtime overhead
– Binary rewriting only is infeasible

• Prevent servers to execute privilege instructions
– Add a tiny secure monitor in hypervisor mode
– For instructions rarely execute: VMExits
– For instructions that frequently required: Rewriting

54

Cross-server IPC Round-Trip
Latency

55

 7500

 8000

 8500
8151

C
yc

le
s

 0

 1000

 2000

 3000

 4000

 5000

Monolithic

ChCore(UnderBridge)

SkyBridge

seL4
seL4-KPTI

Fiasco.OC

Fiasco.OC
-KPTI

Zircon

24 109 437

1450
2035

3057

4145

C
yc

le
s

Evaluated on Dell PowerEdge R640 server with Intel Xeon Gold 6138 CPU

SQLite Throughput under YCSB-A

56

20%

40%

60%

80%

100%

UnderBridge
Zircon Fiasco seL4

SQLite3-xv6fs IPC
xv6fs-RAMdisk IPC

Real Work

 0

 2

 4

 6

 8

 10

Zircon Fiasco.OC seL4

Th
ro

ug
hp

ut

Native w/ KPTI
Native w/o KPTI

SkyBridge

UnderBridge
Monolithic

Monolithic w/o KPTI

Conclusion

• IPC is the Achille’s heel of microkernels.

• SkyBridge
– Bypassing the OS kernel by leveraging VMFUNC
– Strong isolation via EPT domains

• UnderBridge
– Putting deprivileged servers back to kernel and isolate them with Intel PKU
– Faster domain switch

57

Thanks!

