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Security Guarantees

“The SGX1 extensions allow an application to instantiate a protected
container, referred to as an enclave. The enclave is a

where critical aspects of the application functionality have
hardware-enhanced and . New access
controls to to software not resident in the enclave are also
introduced. The SGX2 extensions allow additional flexibility in runtime
management of enclave resources and thread execution within an enclave.”

- Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3D




Security Guarantees

“Only privileged software running at CPL=0 can manage the TLBs”

“Page translation is controlled by the PG bit in CRO (bit 31). When
CRO.PG isset to 1, page translation is enabled.”

“Most instructions used to access these resources are privileged and can only
be executed while the processor is running at CPL=0, although some
instructions can be executed at any privilege level’”

- AMD64 Architecture Programmer’s Manual Volume 2: System Programming




Security Guarantees

- Informal ISA specs offer promise of security guarantee
- “Security guarantee X offers Y/ prevents attack Z”
- Holds for future updates to the ISA
Formal ISA specs lack security specifications
- Focus is on operational specification




Universal Contracts Security

Guarantee

erified
. against
- Security guarantees should be 8

- Part of ISA specification Extended

- Formal Opz;;?nal Operational
Spec

- Verifiable against operational spec
- Specific enough for reasoning

- Not overspecified
- Optimizations and extensions should be possible

- Current approaches do not meet these requirements




Universal Contracts

Formal security guarantee...
... expressed as a contract Software
o Upper bound of the authority Developer
Holds for any code
Verifiable against operational specification of ISA Verify software against

o Sail .
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Hardware
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The MinimalCaps Capability Machine

begin cursor

perm €{O, R, RW}
begin :address
cursor : address
end :address

Capabilities are unforgeable
Permissions are checked
Capability manipulation is safe




Capability Safety
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Contract

execute() : bool :=
C: read _reg _cap pc
n: read_mem c
n
| inl n =>
| = decode n
exec_instri
| inrc =>



Katamaran

/ Symbolic Executor g Verification Conditions

Program Logic
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Contracts

read_memc

read regr

read reg cap r

write_mem ¢c w
update pc
duplicate safe w

MOVeE_Cursor ¢ ¢’




Verifying MinimalCaps’ Security Guarantees

exec_sd(rs : GPR, rb : GPR, immediate : int) : bool :=
base cap = read reg caprb
(perm, beg, end, cursor) := base_cap
c := (perm, beg, end, cursor + immediate)
w = read regrs
use lemma (duplicate_safe w) ;;
use lemma (move_cursor base cap c) ;;
write._ memcw ;;
update pc ;;
true
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Future Work
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Conclusion

- Security Guarantees

- Formalized with Universal Contracts

- Part of security guarantee specification

- Verified against operational specification
- Case Study: MinimalCaps

- Capability safety
- Katamaran

- Semi-automatic separation logic verifier




Thank you!




