Semi-automatic Verification of ISA
Security Guarantees in the Form of

Universal Contracts

(work in progress)

Sander Huyghebaert, Steven Keuchel, Dominique Devriese

Vrije Universiteit Brussel

Qutline

Introduction

Universal Contracts

The MinimalCaps Capability Machine
Katamaran

Verifying MinimalCaps' Security Guarantees

Future Work

Introduction

x86 RISC-V

AN e

/ N\

Hardware Software

Traditionally:

Long manuals
Prose

Recently:

Formal & executable spec

Security Guarantees

“The SGX1 extensions allow an application to instantiate a protected
container, referred to as an enclave. The enclave is a

where critical aspects of the application functionality have
hardware-enhanced and . New access
controls to to software not resident in the enclave are also
introduced. The SGX2 extensions allow additional flexibility in runtime
management of enclave resources and thread execution within an enclave.”

- Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3D

Security Guarantees

“Only privileged software running at CPL=0 can manage the TLBs”

“Page translation is controlled by the PG bit in CRO (bit 31). When
CRO.PG isset to 1, page translation is enabled.”

“Most instructions used to access these resources are privileged and can only
be executed while the processor is running at CPL=0, although some
instructions can be executed at any privilege level’”

- AMD64 Architecture Programmer’s Manual Volume 2: System Programming

Security Guarantees

- Informal ISA specs offer promise of security guarantee
- “Security guarantee X offers Y/ prevents attack Z”
- Holds for future updates to the ISA
Formal ISA specs lack security specifications
- Focus is on operational specification

Universal Contracts Security

Guarantee

erified
. against
- Security guarantees should be 8

- Part of ISA specification Extended

- Formal Opz;;?nal Operational
Spec

- Verifiable against operational spec
- Specific enough for reasoning

- Not overspecified
- Optimizations and extensions should be possible

- Current approaches do not meet these requirements

Universal Contracts

Formal security guarantee...
... expressed as a contract Software
o Upper bound of the authority Developer
Holds for any code
Verifiable against operational specification of ISA Verify software against

o Sail .
Universal

Contract(s)

I Verify ISA offers

Hardware
Designer

Morell
ARMv8-A (CHEORIe AE(‘)M)

ASL ASL

yas!_to_sail

yasl_to_sail
ARMVS-A Morello
= (CHERI ARM)

Sail Sail

Sequential Executio

Sequential
Emulator (C)

Sequential

Emulator (OCaml) I SIE

symbolic evaluator

T

isla—axiomatic
. : : concurrency
Generation 5 : tool

!

i Concurrency models
{ Axiomatic, Cat

CHERI RISC-V

CHERI-MIPS
Sail Sail

RISC-V MIPS
Sail Sail

fragments

Lem

Concurrency models :
Operational, Lem

T [sabelle '

.................... +\

RMEM
concurrency
tool

A {7 ELF model
! Lem

: Documentation

suoniuyaq vsl|

S10BJILY palelousn

The MinimalCaps Capability Machine

begin cursor

perm €{O, R, RW}
begin :address
cursor : address
end :address

Capabilities are unforgeable
Permissions are checked
Capability manipulation is safe

Capability Safety

(2 c,pc~c *k V) k (Vre GPR. 2 w.r>w ¥ V(w))

(V2) = True (zis an integer)
) V(O,---) =True

V(R, b, e, -) =*ae[b’e] w,a~w %k V(i
_ VIRW, b,e,-) = & YELRE I

a € lb,e]

Contract

execute() : bool :=
C: read _reg _cap pc
n: read_mem c
n
| inl n =>
| = decode n
exec_instri
| inrc =>

Katamaran

/ Symbolic Executor g Verification Conditions

Program Logic

Lemma Statements

MSail Fun. Contracts i

_ Iris Model Lemma Verification
MSail Fun. Def.

Operational Semantics

. User Spec - Katamaran Framework . User Proofs

Contracts

read_memc

read regr

read reg cap r

write_mem ¢c w
update pc
duplicate safe w

MOVeE_Cursor ¢ ¢’

Verifying MinimalCaps’ Security Guarantees

exec_sd(rs : GPR, rb : GPR, immediate : int) : bool :=
base cap = read reg caprb
(perm, beg, end, cursor) := base_cap
c := (perm, beg, end, cursor + immediate)
w = read regrs
use lemma (duplicate_safe w) ;;
use lemma (move_cursor base cap c) ;;
write._ memcw ;;
update pc ;;
true

Verifying MinimalCaps’ Security Guarantees

exec_sd(rs : GPR, rb : GPR, immediate : int) : bool :=
base cap = read reg caprb
(perm, beg, end, cursor) := base_cap
c := (perm, beg, end, cursor + immediate)
w = read regrs

use lemma (duplicate safe w) ;;

use lemma (move_cursor base_cap c) ;;
write._ memcw ;;
update pc ;;

true

Verifying MinimalCaps’ Security Guarantees

exec_sd(rs : GPR, rb : GPR, immediate : int) : bool :=
base cap = read reg caprb
(perm, beg, end, cursor) := base_cap
c := (perm, beg, end, cursor + immediate)
w = read regrs

use lemma (duplicate safe w) ;;
use lemma (move_cursor base_cap c) ;;

write._memcw ;;
update pc ;;
true

Verifying MinimalCaps’ Security Guarantees

exec_sd(rs : GPR, rb : GPR, immediate : int) : bool :=
base cap = read reg caprb
(perm, beg, end, cursor) := base_cap
c := (perm, beg, end, cursor + immediate)
w = read regrs
use lemma (duplicate_safe w) ;;
use lemma (move_cursor base cap c) ;;

write._ memcw ;;

update pc ;;
true

Future Work

Accomplished goals Currently working on

AN AN
« Y4 N

ali i Proof
Capability Soundness ~ Object Case Studies 5 ormation Larger ISAs Complex ISAs Realistic ISAs
Safety Katamaran Capabilities

Capability safety Soundness proof Add support for Verification of Further improve Scale up the Introduce Verify security
of the of Katamaran object security proof number of features such as properties of real
MinimalCaps capabilities to properties of automation of instructions in concurrency, ISAs, i.e. RISC-V,
machine the MinimalCaps ISAs with Katamaran ISAs we interrupts, ... CHERI-RISC-V, ...
case study different security consider
primitives

Conclusion

- Security Guarantees

- Formalized with Universal Contracts

- Part of security guarantee specification

- Verified against operational specification
- Case Study: MinimalCaps

- Capability safety
- Katamaran

- Semi-automatic separation logic verifier

Thank you!

