
Semi-automatic Verification of ISA
Security Guarantees in the Form of
Universal Contracts
(work in progress)

Sander Huyghebaert, Steven Keuchel, Dominique Devriese

Vrije Universiteit Brussel

1

Outline

Universal Contracts

The MinimalCaps Capability Machine

Katamaran

Verifying MinimalCaps' Security Guarantees

Future Work

Introduction

2

Introduction

x86 ARMv8 RISC-V

ISA

Hardware Software

Traditionally:
- Long manuals
- Prose

Recently:
- Formal & executable spec

3

Security Guarantees

“The SGX1 extensions allow an application to instantiate a protected
container, referred to as an enclave. The enclave is a trusted area of memory,
where critical aspects of the application functionality have
hardware-enhanced confidentiality and integrity protections. New access
controls to restrict access to software not resident in the enclave are also
introduced. The SGX2 extensions allow additional flexibility in runtime
management of enclave resources and thread execution within an enclave.”

- Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3D

Example: Intel SGX

4

Security Guarantees

“Only privileged software running at CPL=0 can manage the TLBs.”

“Page translation is controlled by the PG bit in CR0 (bit 31). When
 CR0.PG is set to 1, page translation is enabled.”

“Most instructions used to access these resources are privileged and can only
be executed while the processor is running at CPL=0, although some
instructions can be executed at any privilege level.”

- AMD64 Architecture Programmer’s Manual Volume 2: System Programming

Example: AMD64

5

Security Guarantees

- Informal ISA specs offer promise of security guarantee
- “Security guarantee X offers Y / prevents attack Z”
- Holds for future updates to the ISA

- Formal ISA specs lack security specifications
- Focus is on operational specification

Current Approach

6

Universal Contracts

- Security guarantees should be
- Part of ISA specification
- Formal
- Verifiable against operational spec
- Specific enough for reasoning
- Not overspecified

- Optimizations and extensions should be possible
- Current approaches do not meet these requirements

Motivation
Security

Guarantee

Operational
Spec

Verified
against

Extended
Operational

Spec

7

Universal Contracts

{{ security guarantee }} ASM code {{ security guarantee }}

● Formal security guarantee…

● … expressed as a contract
○ Upper bound of the authority

● Holds for any code

● Verifiable against operational specification of ISA
○ Sail

Concept

8

Software
Developer

Hardware
Designer

Universal
Contract(s)

Verify software against

Verify ISA offers

Sail

9

The MinimalCaps Capability Machine

Capability
● perm ∈{O, R, RW}
● begin : address
● cursor : address
● end : address

Memory

begin cursor end

Hardware Guarantees
● Capabilities are unforgeable
● Permissions are checked
● Capability manipulation is safe

10

Capability Safety

(∃ c, pc ↦ c ✱ 𝓥(c)) ✱ (∀ r ∈ GPR. ∃ w. r ↦ w ✱ 𝓥(w))

𝓥(z) = True (z is an integer)

𝓥(O, -, -, -) = True

𝓥(R, b, e, -) = ✱
a ∈ [b, e]

 ∃ w, a ↦ w ✱ 𝓥(w)

𝓥(RW, b, e, -) = ✱
a ∈ [b, e]

 ∃ w, a ↦ w ✱ 𝓥(w)

𝓥(w)

Machine Invariant

Logical Relation 𝓥

11

Contract

 {{ (∃ c . pc ↦ c ✱ 𝓥(c)) ✱ (∀ r ∈ GPR . ∃ w . r ↦ w ✱ 𝓥(w)) }}
 function execute() : bool :=
 let c := call read_reg_cap pc in
 let n := call read_mem c in
 match n with
 | inl n =>
 let i := call decode n in
 call exec_instr i
 | inr c => fail
 end
 {{ (∃ c . pc ↦ c ✱ 𝓥(c)) ✱ (∀ r ∈ GPR . ∃ w . r ↦ w ✱ 𝓥(w)) }}

Execute

12

Katamaran
Semi-automatic separation logic verifier

13

Contracts

 {{ 𝓥(c) }} read_mem c {{ w . 𝓥(w) ✱ 𝓥(c) }}

 {{ r ↦ w }} read_reg r {{ v . v = w ✱ r ↦ w }}

 {{ r ↦ w }} read_reg_cap r {{ c . c = w ✱ r ↦ w }}

 {{ 𝓥(c) ✱ 𝓥(w) }} write_mem c w {{ 𝓥(c) }}

{{ pc ↦ c ✱ 𝓥(c) }} update_pc {{ ∃c . pc ↦ c ✱ 𝓥(c) }}

 {{ 𝓥(w) }} duplicate_safe w {{ 𝓥(w) ✱ 𝓥(w) }}

 {{ 𝓥(c) }} move_cursor c c’ {{ 𝓥(c) ✱ 𝓥(c’) }}

Selection

14

Verifying MinimalCaps’ Security Guarantees
 {{ (∃ c . pc ↦ c ✱ 𝓥(c)) ✱ (∀ r ∈ GPR . ∃ w . r ↦ w ✱ 𝓥(w)) }}
 function exec_sd(rs ∶ GPR, rb ∶ GPR, immediate ∶ int) : bool :=
 let base_cap := call read_reg_cap rb in
 let (perm, beg, end, cursor) := base_cap in
 let c := (perm, beg, end, cursor + immediate) in
 let w := call read_reg rs in
 use lemma (duplicate_safe w) ;;
 use lemma (move_cursor base_cap c) ;;
 call write_mem c w ;;
 call update_pc ;;
 true
 {{ (∃ c . pc ↦ c ✱ 𝓥(c)) ✱ (∀ r ∈ GPR . ∃ w . r ↦ w ✱ 𝓥(w)) }}

15

Verifying MinimalCaps’ Security Guarantees
 {{ (∃ c . pc ↦ c ✱ 𝓥(c)) ✱ (∀ r ∈ GPR . ∃ w . r ↦ w ✱ 𝓥(w)) }}
 function exec_sd(rs ∶ GPR, rb ∶ GPR, immediate ∶ int) : bool :=
 let base_cap := call read_reg_cap rb in
 let (perm, beg, end, cursor) := base_cap in
 let c := (perm, beg, end, cursor + immediate) in
 let w := call read_reg rs in
 {{ rb ↦ base_cap ✱ 𝓥(base_cap) ✱ rs ↦ w ✱ 𝓥(w) ...}}
 use lemma (duplicate_safe w) ;;
 use lemma (move_cursor base_cap c) ;;
 call write_mem c w ;;
 call update_pc ;;
 true
 {{ (∃ c . pc ↦ c ✱ 𝓥(c)) ✱ (∀ r ∈ GPR . ∃ w . r ↦ w ✱ 𝓥(w)) }}

16

Verifying MinimalCaps’ Security Guarantees
 {{ (∃ c . pc ↦ c ✱ 𝓥(c)) ✱ (∀ r ∈ GPR . ∃ w . r ↦ w ✱ 𝓥(w)) }}
 function exec_sd(rs ∶ GPR, rb ∶ GPR, immediate ∶ int) : bool :=
 let base_cap := call read_reg_cap rb in
 let (perm, beg, end, cursor) := base_cap in
 let c := (perm, beg, end, cursor + immediate) in
 let w := call read_reg rs in
 {{ rb ↦ base_cap ✱ 𝓥(base_cap) ✱ rs ↦ w ✱ 𝓥(w) ...}}
 use lemma (duplicate_safe w) ;;
 use lemma (move_cursor base_cap c) ;;
 {{ rb ↦ base_cap ✱ 𝓥(base_cap) ✱ rs ↦ w ✱ 𝓥(w) ✱ 𝓥(w) ✱ 𝓥(c) ...}}
 call write_mem c w ;;
 call update_pc ;;
 true
 {{ (∃ c . pc ↦ c ✱ 𝓥(c)) ✱ (∀ r ∈ GPR . ∃ w . r ↦ w ✱ 𝓥(w)) }}

17

Verifying MinimalCaps’ Security Guarantees
 {{ (∃ c . pc ↦ c ✱ 𝓥(c)) ✱ (∀ r ∈ GPR . ∃ w . r ↦ w ✱ 𝓥(w)) }}
 function exec_sd(rs ∶ GPR, rb ∶ GPR, immediate ∶ int) : bool :=
 let base_cap := call read_reg_cap rb in
 let (perm, beg, end, cursor) := base_cap in
 let c := (perm, beg, end, cursor + immediate) in
 let w := call read_reg rs in
 use lemma (duplicate_safe w) ;;
 use lemma (move_cursor base_cap c) ;;
 {{ rb ↦ base_cap ✱ 𝓥(base_cap) ✱ rs ↦ w ✱ 𝓥(w) ✱ 𝓥(w) ✱ 𝓥(c) ...}}
 call write_mem c w ;;
 {{ rb ↦ base_cap ✱ 𝓥(base_cap) ✱ rs ↦ w ✱ 𝓥(w) ✱ 𝓥(c) ...}}
 call update_pc ;;
 true
 {{ (∃ c . pc ↦ c ✱ 𝓥(c)) ✱ (∀ r ∈ GPR . ∃ w . r ↦ w ✱ 𝓥(w)) }}

18

Future Work

Object
Capabilities
Add support for
object
capabilities to
the MinimalCaps
case study

Case Studies

Verification of
security
properties of
ISAs with
different security
primitives

Proof
Automation

Further improve
proof
automation of
Katamaran

Larger ISAs

Scale up the
number of
instructions in
ISAs we
consider

Complex ISAs

Introduce
features such as
concurrency,
interrupts, ...

Realistic ISAs

Verify security
properties of real
ISAs, i.e. RISC-V,
CHERI-RISC-V, ...

Currently working on

Capability
Safety
Capability safety
of the
MinimalCaps
machine

Soundness
Katamaran
Soundness proof
of Katamaran

Accomplished goals

19

Conclusion

- Security Guarantees
- Formalized with Universal Contracts
- Part of security guarantee specification
- Verified against operational specification

- Case Study: MinimalCaps
- Capability safety

- Katamaran
- Semi-automatic separation logic verifier

20

Thank you!

21

