
Semi-automatic verification of ISA security guarantees in the form of universal
contracts

Work in progress submission

Sander Huyghebaert
Vrije Universiteit Brussel

Steven Keuchel
Vrije Universiteit Brussel

Dominique Devriese
Vrije Universiteit Brussel

Abstract—Where ISA specifications used to be defined in
long prose documents, we have recently seen progress on
formal and executable ISA specifications. However, for now,
formal specifications provide only a functional specification
of the ISA, without specifying the ISA’s security guarantees.
In this paper, we present a novel, general approach to
specify an ISA’s security guarantee in a way that (1) can
be semi-automatically validated against the ISA semantics,
producing a mechanically verifiable proof, (2) supports in-
formal and formal reasoning about security-critical software
in the presence of adversarial code. Our approach is based
on the use of universal contracts: software contracts that
express bounds on the authority of arbitrary untrusted code
on the ISA. We semi-automatically verify these contracts
against existing ISA semantics implemented in Sail using our
Katamaran tool: a verified, semi-automatic separation logic
verifier for Sail. For now, in this paper, we will illustrate
our approach for MinimalCaps: a simplified custom-built
capability machine ISA. However, we believe our approach
has the potential to redefine the formalization of ISA security
guarantees and we will sketch our vision and plans.

Index Terms—ISA security, semi-automatic verification, ca-
pability machines

1. Introduction

An instruction set architecture (ISA) is a specification
of the syntax and semantics of machine code. It serves
as a contract between software and hardware designers.
Traditionally ISAs are specified informally in prose in
long architecture manuals. These specifications are im-
precise, omit details, and offer no way to test/verify ad-
vertised guarantees, which is critical when talking about
security features. The recent trend is to provide formal
and executable specifications [1, 4, 8, 9, 13, 23] of ISAs
for disambiguation, testability, experimentation and formal
study. For instance, Sail [1] is a domain-specific language
for the specification of ISAs, which is accompanied by
a tool that can produce emulators, documentation, and
proof assistant definitions from a Sail specification. Sail
has been adopted by the RISC-V Foundation for the
official formal specification of RISC-V, and is used for the
development of the CHERI extensions [30]. Such formal
specifications are bare necessities for formally verifying
hardware (processors) and software (compilers, programs
written in assembly).

The functional specification of the semantics is not
enough. We also need meta-theoretical statements of the

guarantees that programmers rely on. These are tradition-
ally also in prose, but they should be made formal as well
so that they can be used for reasoning about security-
critical code and validating ISA extensions. Some recent
proposals for formalizing ISA security properties have
focused on making ISA extensions explicit about side-
channel leakage [10, 14]. However, this work specifies
nothing about the behavior of instructions that might be
added in new versions or concrete instantiations of the
ISA, making them unsuitable for validating security of
proposed ISA extensions or for reasoning about security-
critical code for an unspecified implementation of the ISA.
Other work has focused specifically on security guarantees
of capability machines (see below) [19] but has remained
fundamentally incomplete (protection domain crossings
are out of scope). While the work we present in this paper
does not contain the same features as [19] yet, we do
intend to further explore complex semantic features that
complicate the verification of security guarantees.

We propose to formalize ISA security guarantees in
the form of universal contracts, which have already been
applied for formalizing capability-safety of high-level lan-
guages [7, 27, 28], but also assembly languages [12, 26,
29]. Rather than attempting to identify an invariant or
information flow restriction enforced by the machine, uni-
versal contracts start from the observation that the ultimate
goal of security primitives is to reason about trusted code
interacting with untrusted code. Essentially, the idea is to
work in a program logic for assembly code and formulate
ISA security guarantees as a universal contract: a contract
that applies to arbitrary – including untrusted – code.
This universal contract expresses the restrictions that the
programming language enforces on untrusted programs.
The program logic allows to combine manually verified
contracts for trusted code with the universal contract for
untrusted code and prove properties about the combined
program. In addition to formulating the expected security
properties of an ISA, it is also important to verify whether
ISA instructions correctly enforce these security proper-
ties.

For now, universal contracts have only been formalized
and proven for expressing capability safety of simplified
capability machine ISAs and this has required significant
effort [12, 26, 29]. We propose universal contracts as
a more general approach to capture security guarantees
of different security primitives. For this work-in-progress
paper, we instantiate our approach for the capability safety
security guarantee of capability machines and leave other
security primitives as future work. Additionally, we pro-



pose Katamaran, a tool that can be used to validate uni-
versal contracts against the Sail-implemented operational
semantics of ISAs (or their extensions) as implemented
in Sail. The tool is based on a compositional separation
logic for µSAIL (a core calculus for Sail) which can be
used to define a universal contract for the ISA semantics. It
semi-automatically verifies such a contract using symbolic
execution, based on a limited amount of user input. This
input includes contracts for functions used internally to de-
fine the operational semantics and manually-proven helper
lemmas that can be used to explain non-trivial reasoning
steps to Katamaran. The semi-automation is crucial to
make our approach scale to realistic ISAs and to facilitate
adapting ISA security proofs when the ISA changes. To
increase trustworthiness, Katamaran is implemented in
the Coq proof assistant and comes with a mechanically-
verified soundness proof and a sound implementation of
the underlying Sail program logic based on Iris [15].

This paper reports on our work-in-progress devel-
opment of the approach and a first illustration of its
application to concrete ISAs. Specifically, Katamaran is
currently functional and has been proven sound. We have
finished a proof of capability-safety of MinimalCaps (a
minimalistic capability machine ISA), both Katamaran
and our MinimcalCaps case study are publicly available
on GitHub [6]. In a next step, we will extend the approach
to minimalistic ISAs with Trusted Execution Environ-
ments (TEEs), protection rings, and virtual memory. We
will present our approach by presenting MinimalCaps
(Section 2), Katamaran (Section 3) and the formalization
and verification of the MinimalCaps security guarantees
(Section 4). Finally, in Section 5, we will discuss our plans
to apply the approach to more general and realistic ISAs
and ultimately gain more confidence in the security of
realistic processors and systems.

2. The MinimalCaps Capability Machine

Capability machines are a special type of processor
that offer capabilities, which essentially are pointers that
carry a range of authority and permissions. An example of
a mature capability machine ISA extension (or family of
extensions) is CHERI [30]. Conceptually, capabilities are
tokens that carry authority to access memory or an object.
When capabilities represent software-defined authority,
like invoking objects or closures, they are referred to as
object capabilities. Capabilities can be represented as a
quadruple, (p, b, e, a), consisting of the permission of the
capability, the begin address, end address and a cursor.
Permissions on a capability machine can include: O, the
null permission, R, the read permission and RW , the read
and write permission. Fig. 1 shows the range of authority
of a capability is [b, e] and the cursor a denotes what
memory location the capability is currently pointing at.

We will introduce capability safety using the capa-
bility machine we have developed so far for a first case
study, called MinimalCaps. It contains a minimal subset of
instructions from CHERI-RISC-V [30], including branch-
ing, jumping and arithmetic instructions. A word on this
machine is either an integer or capability and these can be
stored in memory and general-purpose registers (GPRs).
For simplicity, MinimalCaps does not yet offer a form of

Figure 1. Concept of a capability

object capabilities. We intend to remove this limitation in
the near future.

The security guarantee we formulate for our capability
machine is capability safety, which expresses bounds on
the authority of arbitrary untrusted code. Our specification
of capability safety is based on that of [7, 11, 12, 27,
28]. Fig. 2 shows the logical relation V that defines the
authority of words (i.e. integers and capabilities). The
logical relation is defined using separation logic [24],
where ∗ is separating conjunction (readers not familiar
with separation logic can interpret it as conjunction) and
7→ the points-to-predicate. A points-to assertion a 7→ w
represents ownership of the memory location at address
a and knowledge of its current contents w. The notation
∗a∈[b,e] indicates that the assertion after this range holds
separately for all addresses a in the range [b, e].

These logical relations express the authority repre-
sented by a value or capability, in the form of separation
logic predicates that must hold for safely passing it to
untrusted code. The definition says that memory capabili-
ties are safe to pass to an adversary when the addressable
locations are owned by an invariant where the word of
each addressable location is safe as well. Note that this
definition assumes a form of shared invariants, as available
in Iris, indicated by a box. For more expressive capability
machines, the definition is complicated further by the
presence of object capabilities, but we refer to existing
work for more explanations about that. In terms of this
logical relation, the ISA security guarantee (capability
safety) states that every instruction will produce safe
values in the registers when it is invoked with safe values
(see Section 3). By the rules of the program logic, this
contract additionally implies that the machine will only
use authority that it has access to through the values in
the registers.

3. Katamaran

Verifying that the semantics upholds security prop-
erties is a serious endeavor and currently requires a lot

V(w)


V(z) = True (z is an integer)
V(O, –, –, –) = True

V(R, b, e, –) = ∗a∈[b,e] ∃w, a 7→ w ∗ V(w)
V(RW, b, e, –) = ∗a∈[b,e] ∃w, a 7→ w ∗ V(w)
Figure 2. Logical relations for capability safety



of manual reasoning. For instance, the Coq formalization
of Georges et al.’s [12] capability safety proof for a
simple capability machine with 19 instructions requires
about 17kLOC. Real ISAs can of course be much larger.
Consequently, scaling up verification of ISA properties
raises important proof engineering challenges. Further-
more, if the ISA specification changes, i.e. due to updates
or entirely new features, or simply for experimentation,
the proofs have to be updated as well. For manual proofs,
this can result in a significant amount of work.

In a nutshell, proof automation is mission-critical for
the verification effort to scale reasonably in terms of the
size and complexity of the specification of the instructions
set and of the specification of the security guarantee itself,
and for proofs to be robust to changes in the specification.

Proof automation means that uninteresting or repetitive
parts of the proof are dealt with fully automatically using
a tool, library, script, etc.. We want to allow a human
to help steer the automation by providing heuristics, and
she should also be able to intervene directly and prove
certain cases manually where full automation fails. In
other words, we want verification to be semi-automatic.

To this end, we are developing Katamaran [17], our
own semi-automatic separation logic verifier. Katamaran
works with µSAIL, a new core calculus for Sail, deeply
embedded in the Coq proof assistant, offering many of
Sail’s features. For the time being, we perform the trans-
lation manually, but in the future, we want to scale the
language up and compile Sail to µSAIL automatically.

Like Sail, we also leave the definition of memory
out of the functional specification and require a (user-
provided) runtime system to define what constitutes the
machine’s memory and provide access to it. This is done
in Katamaran with foreign functions, i.e. functions that
are only declared with their signatures and are callable
from µSAIL code, but are implemented in Coq. Further-
more, µSAIL allows the invocation of lemmas (sometimes
referred to as ghost statements), which instruct the verifier
to take a non-trivial proof step that is verified separately.

The security properties are specified by means of
separation logic-based contracts consisting of pre- and
post-conditions for all functions, including foreign ones.
For this, Katamaran contains its own deeply embedded
assertion language.

Verifying that functions adhere to their contracts is
done via preconditioned forward symbolic execution [2,
3] of the function bodies. During the execution, Kata-
maran tries to discharge proof obligations automatically
and otherwise leaves residual verification conditions for
the user. Currently, we require that all spatial, i.e. related
to registers and memory, proof obligations are dealt with

Figure 3. Structure of Katamaran

automatically, potentially with the help of the user in terms
of ghost statements. The produced residual verification
conditions will be in first-order predicate logic, which the
user can prove with the full proof automation that Coq
provides.

A question that arises is whether the generated ver-
ification conditions are sufficient to verify the function
contracts. The user does not have to take the output of
the symbolic executor at face value: Katamaran comes
with soundness proofs. The structure is depicted in Fig. 3.
The contracts of both kinds of functions and the code of
the µSAIL functions are inputs to the symbolic executor
from which it produces verification conditions. A first
soundness proof connects this to an axiomatic program
logic: given a proof of the verification conditions, the
function bodies are also verifiable in the program logic.

The program logic consists of separation logic-based
Hoare triples. We assign meaning to these triples using
the Iris separation logic framework [15] and verify that
the triples hold. This requires user-provided proofs that
foreign functions adhere to their contracts and that lemmas
used in ghost statements are sound. We kept the axiomatic
program logic separate from its instantiation using Iris,
and in theory, other logics than Iris can be used. However,
we provide the Iris model as the default choice with full
soundness proofs and hooks for the user to extend it.

A last adequacy proof connects the Iris triples to the
operational semantics: every triple that holds semantically
is partially correct. For our purposes, partial correctness
is sufficient; we assume it is verified separately that the
machine cannot get stuck.

4. Verifying MinimalCaps’ Security Guaran-
tees

The verification of capability safety in the literature
so far requires significant effort [12, 26, 29] and in this
section, we demonstrate our semi-automatic approach for
verifying universal contracts.

We will now describe our approach for our simpli-
fied custom-built capability machine ISA, for which the
semantics are specified in Sail. We have performed a
manual translation of the Sail specification to µSAIL,
which is straightforward and most definitions look iden-
tical (without the ghost statements we have added in the
µSAIL code). For the remainder of this section, we will
focus on the machine invariant we have defined for our
MinimalCaps machine and verify that it holds.

The contracts for individual instructions require the
machine invariant as a precondition and upon successful
execution of the instruction, the machine invariant will
still hold. Our program logic contains points-to predicates
for registers, r 7→ w, describing a single register, named
r, with contents w. The machine invariant is defined over
the values of all registers (including the program counter
special-purpose register) and asserts that the values in
these registers are safe:

(∃c. (pc 7→ c) ∗ V(c)) ∗ (∀r ∈ GPR.∃w. (r 7→ w) ∗ V(w))

This machine invariant is also upheld by the fetch-decode-
execute loop. Note that this statement of capability safety
is simpler than related work [12, 26, 29] because of the



lack of object capabilities, but we will strengthen it when
we increase the expressiveness of the ISA.

For other functions, the contracts are more specific to
what each function does. Consider the contract for the
function read mem , which reads the word in memory
denoted by the cursor of the given capability. The contract
is written as a Hoare triple, {{P }} read mem c {{ r.Q }},
where P is the precondition and if read mem c executes
successfully then we bind the result value to the variable r
(the identifier before the ”.”) and Q will hold. Note that we
can use the variable r in Q and if we do not use the result
variable in the postcondition, we will omit it and simply
write {{Q }}. The contract of read mem requires that we
know that the given capability is safe, and after executing
the read mem function, we know that the capability is
still safe and that the read word is safe as well:

{{V(c) }} read mem c {{w.V(w) ∗ V(c) }}

To give you an idea of how these contracts are verified
using Katamaran, Fig. 4 shows the µSAIL implementation
of MinimalCaps’ store instruction, and Fig. 5 displays the
contracts for the functions used in the implementation.
This instruction takes 3 arguments, a register with the
word to be written to memory, a register containing the
capability to be used for writing to memory and an imme-
diate integer to add to the cursor of the capability (i.e. the
contents of rs will be written to cursor + immediate,
where the cursor is part of the capability in rb). The
returned boolean indicates to the fetch-decode-execute
loop that the machine should continue executing.

The first two arguments of the store instruction, rs
(source contents to write to memory) and rb (base capa-
bility for computing the target memory address to write
to), are GPRs and thus their possible values are limited
to the available GPRs of the ISA. A new capability c is
derived from base cap with the immediate added to the
cursor, and this capability will be used to perform the
write to memory of the word w in rs.

Next, we use a few lemmas that will modify the pre-
condition so that the contract of write mem is respected,
which requires that the given capability that denotes the
address to write to is safe and that the word to write
to memory is safe. For simplicity we will assume that
rb = R0, rs = R1 and ignore the non-relevant parts of
the precondition for this discussion.

Figure 4. Simplified version of exec sd implementation with annotations
in bold red between double curly brackets to show the pre- and post-
condition of the exec sd function and at interesting points within the
function.

The first lemma, duplicate safe, duplicates the V(w)
predicate of the word we read from rs, this is necessary
because write mem will consume V(w) but we still need
this predicate to satisfy the machine variant at the end
(i.e. we need rb 7→ w ∗ V(w) as part of the machine
invariant). The move cursor lemma will generate a V
predicate based on the base cap capability for a capability
that differs only in the cursor field (the second argument).
Remember that capability safety requires that all addresses
between [begin, end] are owned by the capability, and the
values pointed to by these addresses should be safe. It
does not mention the cursor of the capability.

The write mem function takes two arguments, a ca-
pability and a word to be written to memory. write mem
will check that the cursor of the capability is within
bounds and has the write permission. If these checks pass,
the given word will be written to memory to the address
denoted by the cursor of the capability argument. These
checks are critical to the capability safety property of the
MinimalCaps machine and the machine will go into a
failed state for attempting an illegal write operation if the
checks are not satisfied. The actual write to memory is
done by a foreign function, called wM , that takes an ad-
dress and a word to be written to memory. wM is provided
by the Sail standard library for the Sail specification and
in the runtime system for its µSAIL counterpart.

The update pc function is quite simple and, as one
would expect, utilizes the move cursor lemma to gener-
ate a V predicate for the updated pc.

Arriving at the end of the implementation of the
store instruction, we can verify that its contract holds,
i.e. the machine invariant is preserved when executing
this instruction. We specify similar contract for the other
instructions, which means that all instructions uphold the
machine invariant. We see the contract for the fetch-
decode-execute cycle as the universal contract of the ISA,
that expresses an authority boundary on (untrusted) code.
With the verification of these contracts we can conclude
that our MinimalCaps ISA enforces the capability safety
security guarantee.

5. Future Work

The MinimalCaps case study demonstrates a working
minimal ISA that allows for further experimentation with
universal contracts. In the near future, we will extend Min-
imalCaps with new instructions for capability inspection
and modification and support for object capabilities. For

{{V(c) }} read mem c {{ v.V(v) ∗ V(c) }}
{{ r 7→ w }} read reg r {{ v. v = w ∗ r 7→ w }}
{{ r 7→ w }} read reg cap r {{ c. c = w ∗ r 7→ w }}

{{V(c) ∗ V(w) }}write mem c v {{V(c) }}
{{ pc 7→ c ∗ V(c) }} update pc {{ ∃c.pc 7→ c ∗ V(c) }}

{{V(w) }} duplicate safe c {{V(w) ∗ V(w) }}
{{V(c) }}move cursor c c′ {{V(c) ∗ V(c′) }}

Figure 5. Contracts for functions and lemmas used in exec sd (r is used
for registers, v and w for values and c for capabilities)



most new instructions, we expect only slight modifications
to be required to verify that the capability safety property
still holds, but object capabilities necessarily complicate
the statement of capability safety a bit.

Katamaran. Since proof automation is key, we want to
lower the proof burden on the user further. We aim to
reduce the need to add certain ghost statements/lemmas,
which could be mitigated by making Katamaran aware of
certain properties of separation logic predicates like V .
For instance, for some of the instructions, we currently
need to duplicate predicates – via a lemma – because they
are consumed by a function call without being produced.
For predicates that are persistent [16], this duplication
is automatically fine, and we intend to make Katamaran
aware of such predicates and take care of the duplication
automatically. We also intend to add support for precise
predicates [21], which will reduce some of the branching
that currently happens in Katamaran.

It is widely recognized that using separating implica-
tion (magic wand) in program verification is convenient
and can lead to shorter contracts and proofs. Alas, adding
the magic wand quickly leads to undecidability [5] and
consequently, many verifiers, including Katamaran, do not
implement support for it. We want to investigate symbolic
execution with limited forms of separating conjunction
and implication [18, 22, 25] to benefit from the conve-
nience.

Universal Contracts. This paper focuses on the capability
safety guarantee of the MinimalCaps machine, formalized
with universal contracts. We aim to generalize universal
contracts so that they apply to more realistic ISAs. To
this end, we will explore three directions: different secu-
rity primitives, larger ISA sizes, and complex semantic
features.

The different security primitives we will focus on are
capability machines, which we have presented in this
paper, a machine with trusted execution environments
similar to Sancus [20] and a machine with protection rings
and virtual memory. For each of these security primitives,
we will first develop a minimal ISA and formalize security
guarantees for these minimal ISAs, demonstrating that
universal contracts are applicable beyond the setting of
capability machines.

We intend to scale up the number of instructions of the
ISAs we take under consideration, to bring them closer to
the size of realistic ISAs. The ISAs can then no longer be
considered minimal, and it will be infeasible to translate
Sail semantics to µSAIL manually. We will also need to
limit the required amount of annotations to a minimum,
i.e. we want to reduce the number of ghost functions
required, to keep the proof effort focused on the interesting
cases. Increasing the ISA sizes will thus demonstrate the
viability of our approach to semi-automate the required
proofs.

Complex semantic features like concurrency, inter-
rupts, or micro-architectural behavior are orthogonal to the
size of the ISA. We separate concerns by first focusing
on increasing the size of the ISAs in the number of
instructions and adding these complex semantic features
at a later stage. Taking different complex semantic fea-
tures into account ensures that our approach must be

generalized and will not be limited to those complex fea-
tures we consider. Specifying universal contracts in such
a richer semantic setting requires careful consideration.
Features like concurrency can impact the formulation of
security properties of ISAs but could also create new
ways that the property could be broken in the semantics.
Fortunately, Katamaran supports different choices for the
underlying program logic and the current default choice
is based on Iris [15], a powerful framework for higher-
order concurrent separation logic, offering features like
guarded recursion and atomic invariants, which have been
developed for reasoning about complex semantic features
of high-level programming languages.

Combining these three directions should result in a
generalized universal contracts approach, for which we
will demonstrate various interesting security guarantees
for ISAs with different security primitives, a vast number
of instructions and complex semantic features. Our next
step is then to apply our approach to realistic ISAs. A
mature capability machine extension like CHERI [30],
which has been instantiated for MIPS and RISC-V, is
worth exploring and formulating security properties for.
An advantage of considering for example CHERI-RISC-
V is that a Sail specification has already been developed
and is publicly available. Another viable path to take is to
consider ISA specifications with non-capability security
primitives such as TEEs, protection rings, and virtual
memory. To this end we will look at publicly available ISA
specifications written in Sail, such as RISC-V [1] (which
has officially been adopted by the RISC-V Foundation),
and use existing extensions that offer the aforementioned
security primitives.

References

[1] Alasdair Armstrong et al. “ISA Semantics for
ARMv8-a, RISC-v, and CHERI-MIPS”. In: Proc.
ACM Program. Lang. 3.POPL (Jan. 2019). DOI:
10.1145/3290384.

[2] Roberto Baldoni et al. “A Survey of Symbolic Ex-
ecution Techniques”. In: ACM Comput. Surv. 51.3
(2018).

[3] Josh Berdine, Cristiano Calcagno, and Peter W.
O’Hearn. “Symbolic Execution with Separation
Logic”. In: Programming Languages and Systems.
Springer Berlin Heidelberg, 2005. ISBN: 978-3-
540-32247-4.

[4] Thomas Bourgeat et al. “A Multipurpose Formal
RISC-V Specification”. In: (Apr. 2021). arXiv:
2104.00762 [cs].

[5] Stéphane Demri, Étienne Lozes, and Alessio Man-
sutti. “The Effects of Adding Reachability Predi-
cates in Propositional Separation Logic”. In: Foun-
dations of Software Science and Computation
Structures. Springer International Publishing, 2018.

[6] MinimalCaps Developers. MinimalCaps Case
Study. 2021. URL: https : / / github. com / skeuchel /
katamaran/tree/main/case study/MinimalCaps.

[7] Dominique Devriese, Lars Birkedal, and Frank
Piessens. “Reasoning about Object Capabilities
with Logical Relations and Effect Parametricity”.
In: IEEE European Symposium on Security and

https://doi.org/10.1145/3290384
https://arxiv.org/abs/2104.00762
https://github.com/skeuchel/katamaran/tree/main/case_study/MinimalCaps
https://github.com/skeuchel/katamaran/tree/main/case_study/MinimalCaps


Privacy (EuroS&P). 2016, pp. 147–162. DOI: 10.
1109/EuroSP.2016.22.

[8] Shaked Flur et al. “Modelling the ARMv8 Ar-
chitecture, Operationally: Concurrency and ISA”.
In: Principles of Programming Languages. ACM,
Jan. 2016, pp. 608–621. DOI: 10 .1145/2837614 .
2837615.

[9] Anthony Fox and Magnus O. Myreen. “A Trust-
worthy Monadic Formalization of the ARMv7 In-
struction Set Architecture”. en. In: Interactive The-
orem Proving. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2010, pp. 243–258.
DOI: 10.1007/978-3-642-14052-5 18.

[10] Qian Ge et al. “Time Protection: The Missing OS
Abstraction”. In: EuroSys Conference 2019. Eu-
roSys ’19. ACM, Mar. 2019, pp. 1–17. DOI: 10 .
1145/3302424.3303976.

[11] Aı̈na Linn Georges et al. “Cap’ ou pas cap’ ?:
Preuve de programmes pour une machine à ca-
pacités en présence de code inconnu”. French. In:
Journées Francophones des Langages Applicatifs
2021. Institut de Recherche en Informatique Fon-
damentale, Apr. 2021.

[12] Aı̈na Linn Georges et al. “Efficient and Prov-
able Local Capability Revocation Using Uninitial-
ized Capabilities”. In: Proc. ACM Program. Lang.
5.POPL (Jan. 2021). DOI: 10.1145/3434287.

[13] Shilpi Goel, Warren A. Hunt, and Matt Kaufmann.
“Engineering a Formal, Executable X86 ISA Sim-
ulator for Software Verification”. en. In: Provably
Correct Systems. NASA Monographs in Systems
and Software Engineering. Springer International
Publishing, 2017, pp. 173–209. ISBN: 978-3-319-
48628-4. DOI: 10.1007/978-3-319-48628-4 8.

[14] Marco Guarnieri et al. “Hardware/Software Con-
tracts for Secure Speculation”. In: S&P 2021. IEEE,
2021.

[15] Ralf Jung et al. “Iris from the ground up: A modular
foundation for higher-order concurrent separation
logic”. In: Journal of Functional Programming 28
(2018). DOI: 10.1017/S0956796818000151.

[16] Ralf Jung et al. “Iris: Monoids and Invariants as an
Orthogonal Basis for Concurrent Reasoning”. In:
SIGPLAN Not. 50.1 (Jan. 2015), pp. 637–650. ISSN:
0362-1340. DOI: 10.1145/2775051.2676980.

[17] Steven Keuchel, Georgy Lukyanov, and Dominique
Devriese. “Katamaran: semi-automated verification
of ISA specifications”. Extended Abstract. 2020.

[18] Wonyeol Lee and Sungwoo Park. “A Proof System
for Separation Logic with Magic Wand”. In: POPL
’14. ACM, 2014, pp. 477–490. DOI: 10 . 1145 /
2535838.2535871.

[19] Kyndylan Nienhuis et al. “Rigorous engineering for
hardware security: Formal modelling and proof in
the CHERI design and implementation process”.
In: IEEE Symposium on Security and Privacy (SP).
2020, pp. 1003–1020. DOI: 10.1109/SP40000.2020.
00055.

[20] Job Noorman et al. “Sancus 2.0: A Low-Cost Secu-
rity Architecture for IoT Devices”. In: ACM Trans.
Priv. Secur. 20.3 (July 2017). ISSN: 2471-2566.
DOI: 10.1145/3079763.

[21] Peter W. O’Hearn, Hongseok Yang, and John C.
Reynolds. “Separation and Information Hiding”. In:
ACM Trans. Program. Lang. Syst. 31.3 (Apr. 2009).
ISSN: 0164-0925. DOI: 10.1145/1498926.1498929.

[22] Jens Pagel and Florian Zuleger. “Strong-separation
logic”. In: Programming Languages and Systems
LNCS 12648 (2021).

[23] Alastair Reid. “Who Guards the Guards? Formal
Validation of the Arm v8-m Architecture Specifi-
cation”. In: 1.OOPSLA (Oct. 2017), 88:1–88:24.
DOI: 10.1145/3133912.

[24] J.C. Reynolds. “Separation logic: a logic for shared
mutable data structures”. In: IEEE Symposium on
Logic in Computer Science. 2002, pp. 55–74. DOI:
10.1109/LICS.2002.1029817.

[25] Malte Schwerhoff and Alexander J. Summers.
“Lightweight Support for Magic Wands in an Au-
tomatic Verifier”. In: ECOOP. Vol. 37. Leibniz
International Proceedings in Informatics (LIPIcs).
Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, 2015, pp. 614–638. DOI: 10.4230/LIPIcs .
ECOOP.2015.614.

[26] Lau Skorstengaard, Dominique Devriese, and Lars
Birkedal. “Reasoning about a machine with lo-
cal capabilities”. In: European Symposium on Pro-
gramming. Springer. 2018, pp. 475–501.

[27] David Swasey, Deepak Garg, and Derek Dreyer.
“Robust and Compositional Verification of Ob-
ject Capability Patterns”. In: Proc. ACM Program.
Lang. 1.OOPSLA (Oct. 2017). DOI: 10 . 1145 /
3133913.

[28] Thomas Van Strydonck, Frank Piessens, and Do-
minique Devriese. “Linear Capabilities for Fully
Abstract Compilation of Separation-Logic-Verified
Code”. In: Proc. ACM Program. Lang. 3.ICFP (July
2019). DOI: 10.1145/3341688.

[29] Thomas Van Strydonck et al. “Proving full-system
security properties undermultiple attacker models
on capability machines”. submitted.

[30] Robert NM Watson et al. Capability Hardware
Enhanced RISC Instructions: Cheri Instruction-Set
Architecture (Version 8). Tech. rep. University of
Cambridge, Computer Laboratory, Oct. 2020.

https://doi.org/10.1109/EuroSP.2016.22
https://doi.org/10.1109/EuroSP.2016.22
https://doi.org/10.1145/2837614.2837615
https://doi.org/10.1145/2837614.2837615
https://doi.org/10.1007/978-3-642-14052-5_18
https://doi.org/10.1145/3302424.3303976
https://doi.org/10.1145/3302424.3303976
https://doi.org/10.1145/3434287
https://doi.org/10.1007/978-3-319-48628-4_8
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2775051.2676980
https://doi.org/10.1145/2535838.2535871
https://doi.org/10.1145/2535838.2535871
https://doi.org/10.1109/SP40000.2020.00055
https://doi.org/10.1109/SP40000.2020.00055
https://doi.org/10.1145/3079763
https://doi.org/10.1145/1498926.1498929
https://doi.org/10.1145/3133912
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.4230/LIPIcs.ECOOP.2015.614
https://doi.org/10.4230/LIPIcs.ECOOP.2015.614
https://doi.org/10.1145/3133913
https://doi.org/10.1145/3133913
https://doi.org/10.1145/3341688

	Introduction
	The MinimalCaps Capability Machine
	Katamaran
	Verifying MinimalCaps' Security Guarantees
	Future Work

