
FlushBlocker: Lightweight mitigating mechanism for
CPU cache flush instruction based attacks

Shuhei Enomoto
Tokyo University of Agriculture and Technology

Japan
enomoto@asg.cs.tuat.ac.jp

Hiroki Kuzuno
Intelligent Systems Laboratory, SECOM Co, Ltd.

Japan
kuzuno@s.okayama-u.ac.jp

Abstract—CPU cache flush instruction based attacks (cache
instruction attacks) such as FLUSH+RELOAD can func-
tion in many environments. Meltdown and Spectre adopt
FLUSH+RELOAD with cache instructions to access secret
data. Additionally, Rowhammer employs cache instructions
to modify data in physical memory. An adversary can read
and write arbitrary data using these attacks. The deployment
of corresponding hardware to combat these attacks is diffi-
cult for users, and existing software-based countermeasures
incur high overheads, or cannot be applied to a variety of
machines.

In this study, we propose a novel mitigation mechanism
for cache instruction attacks called FlushBlocker, which
employs an effective approach that focuses on restricting
cache flush instructions. We implemented FlushBlocker on
the latest Linux kernel to conduct experiments. The exper-
imental results indicate that FlushBlocker prevents existing
cache instruction attacks and runtime overhead is negligible.

Index Terms—side-channel attack, operating system, security

1. Introduction

Hardware devices have been targeted by CPU cache
flush instruction based attacks (in short, cache instruc-
tion attacks). An attacker issues instructions that control
CPU cache sectors (e.g., clflush in x86) to read or write
arbitrary data. Meltdown [1] and Spectre [2] adopted
FLUSH+RELOAD [3], [4] with transient execution of
CPU to access protected information on an operating
system (OS) kernel or a user process (e.g., x86 or ARM
architecture). Additionally, Rowhammer [5] used cache in-
structions during the attack phase to flip bits in a physical
memory (e.g., DDR3 memory) to implement an actual
attack (e.g., privilege escalation) [6].

Protection against Meltdown and Spectre with
FLUSH+RELOAD by disabling last-level cache (LLC)
and prohibiting of the out-of-order and speculative fea-
tures require performance degradation. Moreover, the
memory with an error detection feature (e.g., ECC mem-
ory) is effective in mitigating 1-bit flip based Rowhammer
attack. However, ECC memory can not protect against
more than 2-bit flips at a time [7].

The current software based countermeasures have
two challenges unaddressed. First, to prevent Meltdown
/ Spectre, Kernel page table isolation (KPTI) [8], [9]

contributes approximately 22% of the overhead [10], and
Retpoline [11] requires 66% overhead [10]. Additionally
overhead reducing approaches require hardware support.
Hardware based taint tracking Spectre mitigation [12] and
modifying the source code in the hypervisor’s layer to
mitigate Meltdown [13] and Rowhammer [7] is difficult
to be applied by cloud users.

In this paper, we propose FlushBlocker, a novel mit-
igation approach against cache instruction attacks such
as FLUSH+RELOAD based Meltdown / Spectre and
Rowhammer. FlushBlocker achieves two objectives. First,
it focuses on preventing cache instruction attacks with a
low overhead. It prohibits the cache flush instructions from
accessing the user process by scanning the instructions.
Second, FlushBlocker supports various environments and
minimizes the need for hardware features. It is deployed
as a kernel component with countermeasures against de-
feating methods. Moreover, we consider several defeating
methods that forcibly circumvent FlushBlocker to utilize
kernel capabilities such as user process creation or mem-
ory mapping. We meticulously produced countermeasures
for each defeating method, without side effects at the
kernel layer.

The contributions of this study are summarized as
follows:

1) We present FlushBlocker’s design for mitigating
cache instruction attacks without hardware sup-
port.

2) Implementing FlushBlocker provides an addi-
tional kernel mechanism that corresponds to de-
feating methods. In addition, FlushBlocker trans-
parently scans and traps the cache flush instruc-
tions for the user process.

3) We evaluated the implemented FlushBlocker in
the latest Linux kernel where it successfully pre-
vented Meltdown’s, Spectre’s, and Rowhammer’s
proofs-of-concept (PoC) attacks and defeated
cache instruction attack. In addition, we measured
FlushBlocker’s performance using benchmarks,
and demonstrate that the performance overhead
is only 0.013%–8.60% that of native kernel.

2. Background

2.1. FLUSH+RELOAD Attack

Meltdown [1] and Spectre [3] employ
FLUSH+RELOAD [3], [4] with transient execution



Figure 1. FLUSH+RELOAD and Rowhammer attack overview

CPU vulnerabilities to deliver a side-channel attack.
These attacks leak secret data from the victim’s kernel or
user process to the attacker’s user process in LLC.

Figure 1 shows the three phases of a
FLUSH+RELOAD attack for estimating one byte
of the secret data. First, an attacker creates a malicious
user process that contains the FLUSH+RELOAD and
Meltdown / Spectre payload. The user process allocates a
one-byte array from array[0*4096] to array[255*4096]
and executes cache flush instructions to evict all the
cached elements from the CPU cache. Next, the user
process obtains the one-byte secret data leaked by
Meltdown / Spectre and it accesses array[secret*4096]
to store the secret data in the CPU cache. Finally, the
user process calculates the access time for each index of
the array. Since array[secret*4096] is the shortest access
time, the user process determines the secret data.

Although Meltdown and Spectre can combine
with other CPU cache based attack methods
(e.g., PRIME+PROBE [14]), we analyzed actual
Meltdown/Spectre based malwares1 indicating that ten out
of the total twelve samples contained FLUSH+RELOAD.

2.2. Rowhammer Attack

The Rowhammer [5] is a one of the fault injection
attacks in DRAM. An attacker repeatedly and with a high
frequency accesses memory location called memory rows,
to flip the data bits stored there. This allows write access
to OS kernel data for privilege escalation [6].

Figure 1 shows an overview of Rowhammer. First, an
attacker identifies a target memory row (victim row) that
relates to the target user’s or kernel’s virtual address. In
addition, it also identifies the virtual addresses related to
the memory rows around the victim row (aggressor rows).
Next, they access the virtual addresses of the aggressor
rows with the cache flush instruction.

We analyzed the samples of Rowhammer’s PoC at-
tack published as open-sourced projects, which indicate
that seven of the total ten samples contained cache flush
instructions.

2.3. Threat Model

We postulate that the threat model of the adversary’s
environment is as follows:

1We downloaded samples from hybrid-analysis.com

Permission: An adversary has normal user privileges.
For example, an adversary can access file system, net-
working and control processes as a non-root user. How-
ever, they cannot insert malicious kernel modules into the
OS kernel.

Attack-Method: An adversary attacks the system with
cache instruction attacks such as FLUSH+RELOAD based
Meltdown / Spectre and Rowhammer. Through such at-
tacks, an adversary attempts to obtain read and write
access to arbitrary data.

3. Proposed Approach

3.1. Requirements of FlushBlocker

We propose FlushBlocker with a low overhead for
kernel processing to meet the requirements of mitigating
the cache instruction attacks.

1) Mitigate the cache instruction attacks while re-
taining a low overhead.

2) Support a wide range of architectures and kernel
designs.

To satisfy requirement 1, FlushBlocker targets the
kernel component design to reduce the negative effects
of mitigating the processes for kernel processing. Flush-
Blocker ensures that user applications incur running costs
in the native environment.

To satisfy requirement 2, FlushBlocker does not rely
on hardware features to cover multiple architectures and
kernel designs for easy porting of the mitigation process.

3.2. Approach of FlushBlocker

FlushBlocker focuses on cache instruction attacks as
it needs specific cache flush instructions in the attack-
ing phase and this helps in restricting the cache flush
instructions to mitigate the attacks. When using Flush-
Blocker, the malicious user process cannot obtain secret
data from the CPU cache because it is difficult to identify
the byte of data that matches the CPU cache during the
cache access calculation. In addition, the malicious user
process cannot repeatedly access memory row with cache
flush instructions. Therefore, Meltdown and Spectre with
FLUSH+RELOAD attacks and Rowhammer attack pro-
cesses cannot easily execute the cache instruction attacks.

4. Design and Implementation

4.1. Monitoring of User Process

To trap the specific instructions of the user process,
FlushBlocker uses the hardware breakpoint of debug reg-
isters of the CPU architecture. Additionally, FlushBlocker
scans the program of the user process and then stores the
position of the targeted instructions to the debug registers
for dynamic trapping.

Figure 2 illustrates the handling flow process of Flush-
Blocker, which is detailed as follows:

1) The adversary executes a malicious user program
that initiates a side-channel attack.



Figure 2. FlushBlocker design overview

2) The kernel loads the malicious user process
to memory through the program execution se-
quence.

3) FlushBlocker scans all the pages of the malicious
program code during the system call invocation.
The scan attempts to detect the cache flush in-
structions on each page.

4) FlushBlocker marks the virtual addresses of the
cache flush instructions when the pages contain
such cache flush instructions, and subsequently,
identifies the malicious user process as a moni-
toring target.

5) The malicious user process initiates a cache in-
struction attack.

6) FlushBlocker traps the execution of the cache
flush instructions at the kernel. When a trap oc-
curs, FlushBlocker determines if the cache flush
instructions belong to the target user process. If
the target user process executes the targeted cache
flush instructions, then FlushBlocker increments
the program counter of the target user process.

7) The malicious user process continues the execu-
tion position of the program after the cache flush
instructions.

FlushBlocker scans pages of the user process, making
them transparent to prevent cache flush instructions for
each user process.

4.2. Setting for Tolerance of Cache Flush

FlushBlocker skips cache flush instructions in the de-
fault setting when the instructions are trapped. However,
skipping the instructions may compromise the semantics
of the program. To minimize the impact on the semantics,
FlushBlocker provides a policy regarding treatment of the
trapped instructions to the root user. In the current design,
root user can set a number for tolerance of cache flush
instructions per one second of one process. Based on the
setting, FlushBlocker determines whether or not to skip
the instructions.

4.3. Defeating Methods of FlushBlocker

Several defeating methods attempt to avoid the mitiga-
tion approach of FlushBlocker by forcibly issuing cache
flush instructions from malicious user processes within an
existing kernel.

Defeating Method 1 (DM1): A malicious user process
creates a user process or thread that issues cache flush
instructions.

Figure 3. Countermeasures against defeating FlushBlocker

Defeating Method 2 (DM2): When running, a mali-
cious user process creates an additional page that contains
cache flush instructions and then issues these instructions.

Defeating Method 3 (DM3): A malicious user pro-
cess creates an additional page containing cache flush
instructions without an execution flag. It then enables the
execution flag of the page through an mprotect system
call.

Defeating Method 4 (DM4): A malicious user process
contains more cache flush instructions than the number of
hardware debug registers in a CPU’s architecture.

4.4. Countermeasures for the Defeating Methods

FlushBlocker provides countermeasures for DMs (Fig-
ure 3).

Countermeasure for DM1: DM1 uses an existing
kernel implementation that does not set a debug register
for the child user process or thread from the debug register
setting of the parent user process. DM1 can issue cache
instructions in the child user process or thread to avoid
FlushBlocker tracking. FlushBlocker copies the debug
register information to the child user process or thread
from the parent user process.

Countermeasure for DM2: DM2 attempts to create
an additional page with an execution flag and the cache
flush instruction. It avoids FlushBlocker’s page-scanning
phase at the exec system call timing. FlushBlocker
adopts the following countermeasures to traps the cache
flush instruction of an additional page:

1) A malicious user process creates an additional
page with an execution flag through the memory
allocation sequence.

2) FlushBlocker stores the starting and ending vir-
tual addresses of the page during the memory
allocation sequence.

3) A malicious user process copies the program
code payload containing the cache flush instruc-
tion.

4) FlushBlocker triggers the page writing and de-
mands paging of page faults at the kernel to deter-



mine if the virtual address of a page fault matches
the targeted page for dropping the execution flag.

5) A malicious user process executes cache flush
instructions on the additional page.

6) FlushBlocker catches a page fault with an exe-
cution flag exception and determines the virtual
address of the page fault contained in the target
pages. FlushBlocker identifies previously targeted
pages and enables the execution flag.

Countermeasure for DM3: DM3 adopts the execu-
tion flag to avoid FlushBlocker’s page scan at the execu-
tion and additional page allocation. First, the malicious
user process creates an additional page without an execu-
tion flag. Subsequently, it writes cache flush instructions
to the additional page; finally, it enables the execution flag.

FlushBlocker’s countermeasure against DM3 is to
hook the internal process of the execution flag control
to identify the cache flush instruction of the target page
scanning before executing the flag available on the kernel.

Countermeasure for DM4: DM4 uses the drawback
of the limitation of the hardware debug register feature.
The malicious user process contains more cache flush
instructions than the CPU hardware debug register. Flush-
Blocker cannot register all the cache flush instructions to
the hardware debug register; therefore, the malicious user
process issues the cache flush instruction without being
trapped by FlushBlocker.

FlushBlocker counters this limitation by controlling
the execution flag of a page. Moreover, FlushBlocker only
enables the execution flag of the page containing cache
flush instructions stored in one of the hardware debug
registers. After trapping the cache flush instruction, Flush-
Blocker exchanges the virtual address on the hardware
debug register from the trapped cache flush instruction
with other flush instructions. In addition, FlushBlocker
enables the execution flag of pages that only store virtual
addresses on the hardware debug registers.

4.5. Implementation

We implemented FlushBlocker on a Linux kernel with
x86 64 architecture.

4.5.1. Page Scanning. Page scanning of the user process
at the exec system call invocation. FlushBlocker reads
every code page of the user process and searches binary
patterns of the cache flush instructions. In the x86 64
architecture, the user process can only issue clflush and
clflushopt for cache flush of non-privileged instructions.
Therefore, our prototype targets the two instructions.

4.5.2. Debug Register. FlushBlocker stores the virtual
addresses of the cache flush instructions to debug registers.
FlushBlocker requires the monitoring flag enable_dr
variable for the task_struct structure and enables the
monitoring flag when the user process is the monitoring
target. The x86 64 architecture has eight debug regis-
ters (i.e., DR0–DR7) that require privileged instructions
to enable control. Four debug registers (i.e., DR0–DR3)
are available for trapping of the virtual addresses. Flush-
Blocker ensures that the user process with normal privi-
lege cannot misuse the debug registers and the ptrace
system call that requires root privilege.

4.5.3. Trapping of Cache Flush Instructions. Flush-
Blocker provides a configurable policy related to a num-
ber for tolerance of cache flush instructions. In the cur-
rent implementation, FlushBlocker uses the procfs inter-
face (/proc/flushblocker) to obtain the setting. To
avoid access of the setting by a malicious user, only the
root user has read and write access to the file. When the
hardware debug interruption occurs, FlushBlocker iden-
tifies if the user process is being monitored by using a
monitoring flag variable. In case of exceeding tolerance,
FlushBlocker skips the instructions to increase the IP
register for the malicious user process.

4.5.4. Countermeasures for the DMs. FlushBlocker
adopts the countermeasures for DMs for Linux kernel
implementation with the x86 64 architecture.

Countermeasure for DM1: To handle the continuous
monitoring of malicious user process trees, FlushBlocker
duplicates the debug register information to the child
process from the parent process in the clone system call.

Countermeasure for DM2: To trap the cache flush
instruction on an additional page while the user pro-
cess runs, FlushBlocker forcibly disables the execution
privilege of the VM_EXEC flag for user processes when
the additional page requires the PROT_EXEC flag during
the mmap system call invocation. Therefore, FlushBlocker
traps the cache flush instruction of the additional page us-
ing page fault mechanisms. If an additional page contains
cache flush instructions, then FlushBlocker sets the debug
register of the virtual address and enables VM_EXEC.

Countermeasure for DM3: To handle the
PROT_EXEC flag enabling the non-executable page
that contains a program payload with the cache flush
instruction, FlushBlocker hooks the mprotect system
call invocation with PROT_EXEC to scan the page and
check if it contains cache flush instructions. Next, it
registers the additional cache flush instructions to handle
trapping with the hardware debug register.

Countermeasure for DM4: FlushBlocker manages
hardware debug registers to track more than five cache
flush instructions on the x86 64 architecture. (e.g., x86 64
has four debug registers for trapping). FlushBlocker
forcibly sets a non-executable (NX) bit for the remaining
pages that are not registered to the hardware debug regis-
ters (i.e., DR0–DR3). Additionally, FlushBlocker sorts de-
bug register entries using the least recently used algorithm
when a page fault has occurred and exchanges addresses
on the hardware debug registers with NX bit handling.

5. Evaluation

The objectives of evaluating FlushBlocker are as fol-
lows:

1) Security capability of FlushBlocker: We evalu-
ated whether the FlushBlocker kernel can pre-
vent the Meltdown, Spectre, and Rowhammer
PoC code execution. Additionally, we assessed
whether the FlushBlocker kernel can prevent
DMs 1 through 4 that attempt to issue and execute
clflush instructions.

2) Performance measurements: We measured the
performance overhead for the kernel processing



TABLE 1. PREVENTION RESULT OF FLUSHBLOCKER FOR CACHE
INSTRUCTION ATTACKS (✓ SUCCESS; − FAILURE)

Attack Description Vanilla kernel FlushBlocker
Meltdown PoC [15] w/o KPTI − 　 ✓
Spectre PoC [16] w/o Retpoline − 　 ✓
Rowhammer PoC [17] − 　 ✓

TABLE 2. PREVENTION RESULT OF FLUSHBLOCKER FOR
DEFEATING METHODS (✓ CLFLUSH NOT AVAILABLE; − CLFLUSH

AVAILABLE)

Attack Description w/o CM w/ CM
DM1 clflush through child user process − 　 ✓
DM2 clflush on the mmap’s new page − 　 ✓
DM3 clflush through the mprotect − 　 ✓
DM4 five clflush instructions − 　 ✓

time using the benchmark software on the Flush-
Blocker kernel.

3) Analysis of benign applications: We statically
analyzed the binary file of benign applications
that contain cache flush instructions to determine
the effects of restricting cache flush instructions.

FlushBlocker was evaluated on a Linux kernel 5.7.15.
The evaluation environment was executed on physical ma-
chine 1 equipped with an Intel (R) Core (TM) i9-10900T
(1.90 GHz, x86 64) processor with 32 GB memory, and
physical machine 2 was equipped with an Intel (R) Core
(TM) i7-4800MQ (2.70 GHz, x86 64) processor with 16
GB memory for the client. The Linux distribution used
was Ubuntu 20.04.1 LTS; FlushBlocker’s implementation
required 664 lines in the Linux kernel.

5.1. Security Capability of FlushBlocker

First, we compared the security capabilities by using
actual Meltdown, Spectre, and Rowhammer PoC codes
[15]–[17] on a vanilla kernel without KPTI [8], [9] and
Retpoline [11] and a kernel with FlushBlocker. In the
experiment of Rowhammer, the PoC code attempted to
double-sided Rowhammer for 10 hours. Table 1 lists the
security capability results. We ensured that FlushBlocker
successfully prevented leaks using Meltdown and Spec-
tre. Additionally, FlushBlocker had no bit flips, whereas
vanilla kernel had 2-bit flips.

Next, we evaluated FlushBlocker without countermea-
sures and FlushBlocker that adopted countermeasures for
the four DMs. The DMs attempted to execute the clflush
instruction on the kernel with FlushBlocker. Table 2 shows
that FlushBlocker without countermeasures (w/o CM)
could not prevent cache flush instruction execution from
DMs. Conversely, FlushBlocker with countermeasures (w/
CM) detected and stopped all the DMs from issuing
clflush instructions.

5.2. Performance Measurements

For performance measurement, we used original
micro-benchmark program and real-world server applica-
tions to compare the vanilla kernel and the kernel with
FlushBlocker. The vanilla kernel is compiled with default
config enabled security features such as KPTI.

First, We measured the FlushBlocker overhead using
the original benchmark program. The original benchmark
program uses a fork and exec library call that creates a

Figure 4. Results of the benchmark software
TABLE 3. NUMBER OF CLFLUSH INSTRUCTIONS’ BENIGN

APPLICATIONS

Environment Total apps clflush apps clflushopt apps
Ubuntu Linux 20.04.1 LTS 1,484 1 0
Debian GNU/Linux 10 1,462 1 0
CentOS Linux release 7.9.2009 1,003 0 0
Linux Mint 19.3 2,182 0 0

new user process, executing a pwd command. Figure 4
indicates that FlushBlocker requires an overhead of 8.60%
for the original benchmark program.

Next, we measured the real-world application’s per-
formance using Apache httpd 2.4.46 with ApacheBench
2.3 and Redis 6.2.3 with Redis-benchmark 6.2.3. Both
benchmarks create 100 clients and send 10,000 requests
to calculate the requests per second with a network speed
of 1 Gbps. Figure 4 shows the results of the applications.
FlushBlocker experiences a 0.013% slowdown for httpd
and 0.045% - 0.046% slowdown for Redis.

5.3. Analysis of Benign Applications

We analyzed benign applications to determine whether
clflush and clflushopt instructions are included in the
ELF binary applications on the default installation set-
ting of major Linux distributions to avoid the effects of
FlushBlocker. Table 3 presents the results of the analysis.
The results show that one ELF binary gnome-control-
center contains one clflush instruction pattern on Ubuntu
Linux 20.04.1 LTS and Debian GNU/Linux 10. However,
the gnome-control-center doesn’t call clflush because the
instruction pattern is found in data section.

6. Discussion

Evaluation Consideration: The evaluation results in-
dicate that FlushBlocker can prevent actual attacks from
Meltdown, Spectre, and Rowhammer PoC code. In ad-
dition, FlushBlocker counters DM1 through DM4 that
attempt to prevent the scanning and monitoring of cache
flush instructions. The performance evaluation results in-
dicate that FlushBlocker has the kernel processing perfor-
mance overhead from 0.013% to 8.60%.

FlushBlocker achieves the light performance effect
that requires page scanning during the user process cre-
ation time and its function processing is only invoked from
the debug register entries. The results of ApacheBench
and Redis-benchmark show that the server applications are
low overhead than micro-benchmark such as simple fork-
exec. The reason is that the server applications have fewer



syscalls leading to FlushBlocker during the benchmark
time. Additionally, FlushBlocker employs a page fault
mechanism to counter DM2 - DM4, we will evaluate the
overhead of the actual page fault for cache flush trapping.

Implementation Consideration: The implementation
of FlushBlocker drops the execution privilege of pages to
trap cache flush instructions across multiple pages. If the
user process stores more than five cache flush instructions
per page, FlushBlocker stops the running user process
on the x86 architecture. FlushBlocker then handles these
pages, which contain over five cache flush instructions in
the future.

Portability Consideration: The implementation of
FlushBlocker proceeds to the kernel of another OS by
adopting a page management mechanism on the x86 64
architecture. The Windows kernel provides the trapping
function for user process creation at the kernel-mode
driver API 2 and the referring and setting functions 3

handle the debug register of the user application thread.

7. Related Work

Side-Channel Attacks: Meltdown adopts a
FLUSH+RELOAD attack [3], which targets CPU
L3 caches to access the secret data of user processes
and kernels. The FLUSH+RELOAD attack calculates
the access time of information after flushing the entire
cache. A short access time indicates that information has
leaked from the cache. The FLUSH+FLUSH [18] attack
is another flush based side-channel method that guesses
secret data by observing the execution time difference of
clflush after caching a target element.

Side-Channel Attack Countermeasures: KPTI [9]
adopts a page table isolation method that prevents side-
channel attacks from the user mode to the kernel mode.
KPTI incurs a page table switching cost to update the
CR3 register. EPTI [13] reduces the overhead of the KPTI
by separating the page table isolation mechanism with an
Intel extended page table (EPT) for a guest OS that does
not require KPTI. ConTExT [12] is a mechanism for mit-
igating Spectre-style attacks. In ConTExT, a page storing
secret data is marked as a “non-transient page” and it is
tracked by hardware taint tracing for registers containing
the secret data for transient execution instructions.

Comparison with Countermeasures: We compared
the features of FlushBlocker with other mechanisms. Al-
though KPTI [8] and EPTI [13] prevent Meltdown from
the userspace to the kernel, KPTI has a 22% overhead cost
for prevention [10] and EPTI requires code modification of
the hypervisor. FlushBlocker directly inspects the behavior
of malicious user processes using cache flush instructions
without page table isolation with low overhead and high
portability. To address other cache flush instruction attacks
(e.g., PRIME+PROBE [14]), FlushBlocker must adopt
instruction filtering customized for each cache controlling
phase.

8. Conclusion

Cache instruction attacks are widely adopted by Melt-
down, Spectre, and Rowhammer attacks. As software

2PsSetCreateProcessNotifyRoutine
3PsGetContextThread and PsSetContextThread

based countermeasures against cache instruction attacks
incur performance overheads and another countermeasures
with CPU virtualization require hardware support, these
approaches cannot be deployed in many environments,
such as embedded or mobile hardware.

Our novel design for cache instruction attack mitiga-
tion, FlushBlocker, enables CPU cache flush instructions
to be trapped and monitored to prevent FLUSH+RELOAD
and Rowhammer attacks. The design of FlushBlocker
focuses on the kernel component that transparently pro-
hibits the CPU cache flush instruction for the user pro-
cess from being executed. Hence, adversaries cannot eas-
ily leak the secret data from CPU caches because the
FLUSH+RELOAD and Rowhammer attacks have failed.

An evaluation of FlushBlocker confirms that it can pre-
vent the PoC code of Meltdown, Spectre, and Rowhammer
from being executed. Moreover, FlushBlocker counters the
four FlushBlocker DMs, and achieves a low-performance
overhead of 0.013%–8.60% for kernel processing.

References

[1] Moritz Lipp, et al. Meltdown: Reading kernel memory from user
space. In Security ’18, pages 973–990. USENIX, 2018.

[2] Paul Kocher, et al. Spectre attacks: Exploiting speculative execu-
tion. In S&P ’19. IEEE, 2019.

[3] Yuval Yarom, et al. Flush+reload: A high resolution, low noise,
l3 cache side-channel attack. In Security ’14, pages 719–732.
USENIX, 2014.

[4] Zhang Xiaokuan, et al. Return-oriented flush-reload side channels
on arm and their implications for android devices. In CCS ’16,
page 858–870. ACM, 2016.

[5] Google Project Zero. Exploiting the DRAM rowhammer bug to
gain kernel privileges.
https://googleprojectzero.blogspot.com/2015/03/
exploiting-dram-rowhammer-bug-to-gain.html, 2015.

[6] Daniel Gruss, et al. Another flip in the wall of rowhammer
defenses. In S&P ’18, pages 245–261. IEEE, 2018.

[7] Radhesh Krishnan Konoth, et al. Zebram: Comprehensive and
compatible software protection against rowhammer attacks. In
OSDI ’18, pages 697–710. USENIX, 2018.

[8] Kernel.org. Page table isolation (pti).
https://www.kernel.org/doc/html/latest/x86/pti.html.

[9] Daniel Gruss, et al. KASLR is dead: Long live KASLR. In ESSoS
’17, pages 161–176. Springer, 2017.

[10] Xiang (Jenny) Ren, et al. An analysis of performance evolution
of linux’s core operations. In SOSP ’19, pages 554–569. ACM,
2019.

[11] Paul Turner. Retpoline: A Branch Target Injection Mitigation.
https://support.google.com/faqs/answer/7625886, 2018.

[12] Michael Schwarz, et al. Context: A generic approach for mitigating
spectre. In NDSS ’20. The Internet Society, 2020.

[13] Zhichao Hua, et al. EPTI: Efficient defence against meltdown
attack for unpatched vms. In ATC ’18, pages 255–266. USENIX,
2018.

[14] Mehmet Sinan Inci, et al. Cache attacks enable bulk key recovery
on the cloud. In CHES ’16, pages 368–388. Springer, 2016.

[15] paboldin. meltdown-exploit.
https://github.com/paboldin/meltdown-exploit, 2018.

[16] Eugnis. spectre-attack.
https://github.com/Eugnis/spectre-attack, 2018.

[17] google. rowhammer-test.
https://github.com/google/rowhammer-test, 2014.

[18] Daniel Gruss, et al. Flush+flush: A fast and stealthy cache attack.
In DIMVA ’16. Springer, 2016.


