
Borrowed Capabilities: Flexibly Enforcing Revocation on a Capability
Architecture

Thijs Vercammen
KU Leuven

Thomas Van Strydonck
KU Leuven

Dominique Devriese
Vrije Universiteit Brussel

Abstract—Capability machine ISAs offer a security prim-
itive called capabilities: unforgeable tokens that represent
authority over memory, and the authority to invoke other
components. To efficiently implement temporary authority
delegation, i.e. capabilities which can be revoked between
distrusting components, ISA extensions have been proposed
and/or implemented, based on forms of garbage collection,
local capabilities or linear capabilities. Each of these mech-
anisms has specific advantages and disadvantages. In this
paper, we explore borrowed capabilities: a novel mechanism
that combines some of the advantages of linear capabilities
without requiring linear treatment of revocable pointers.
Inspired by borrowing in substructural type systems like
Rust, the idea is to reinterpret capability sealing as a form
of borrowing. The seals behave as a form of lifetime identifier
and can be matched against a separate lifetime token, which
represents the lifetime. This short paper offers a first explo-
ration of the idea, by defining an extension of the CHERI-
RISC-V ISA with borrowed capabilities and a variety of
features like mutable and immutable borrows, fractional
lifetimes and reborrows. We extend the LLVM assembler
for CHERI and experiment with example programs.

Index Terms—capabilities, ownership, revocation, CHERI,
Sail, Rust

1. Introduction

In any application where multiple stakeholders manip-
ulate resources (file system handles, sockets, stack frames,
. . .), it is important to correctly manage access to them.
One essential aspect of this process is revocation; repeal-
ing the access an untrusted stakeholder has to a resource
we own. In this work, we are specifically interested in
mechanisms for revocation on capability machines; archi-
tectures that implement capabilities as a security primitive.

Hardware capabilities are unforgeable pointers that
represent authority explicitly. They carry permissions, and
grant their owner access to a specific memory region. Fig.
1a illustrates how a capability (p, o, l, b, e, a) in register
rcap carries permissions p (e.g. RW) over an area [b, e) of
memory, currently pointing to address a (l denotes the lin-
earity of the capability and o the otype, further explained
below). In recent years, these capabilities have received
renewed attention, largely thanks to the CHERI capability
machine [1]. Capability machines are particularly well-
suited to enforcing spatial safety properties, and thereby

Thomas Van Strydonck holds a PhD Fellowship of the Research Foun-
dation - Flanders (FWO).

(a) A regular capability cap carries
its own authority over memory.

(b) A borrowed capability only
carries authority over memory if
register 31 contains a matching
lifetime token.

Figure 1. Representation of authority carried over memory by capabili-
ties.

prevent e.g. buffer overflows. On the other hand, temporal
safety properties, including revocation, are a less obvious
fit to the capability model, and therefore harder to enforce
efficiently in practice [2].

Prior work has attempted to solve the revocation is-
sue in several ways. CHERIvoke [3] and Cornucopia [4]
present a method of revoking capabilities by modifying
the system’s memory allocator and periodically sweeping
memory to remove capabilities pointing to memory that
has been freed. While this approach to temporal safety
could be tailored to different scenarios than just memory
allocation, it includes the memory allocator into the TCB,
and could be prohibitively expensive if the memory sweep
is required often (e.g. after each call to an adversary). Two
other approaches each use a different type of capabilities,
respectively called local and linear capabilities, to imple-
ment a type of revocation that does not rely on a memory
sweep or a software TCB, and could perform better in the
aforementioned scenarios.

Local capabilities are capabilities in CHERI that do
not have the global permission set. Capabilities without
this permission can only be stored to so-called write-
local memory (defined through a different permission),
providing a useful primitive for software to build upon.
Software can limit the propagation of local capabilities by
limiting access to write-local memory, and can implement
revocation by clearing all write-local memory. Skorsten-
gaard et al. introduce a new calling convention using
local capabilities [5] to enforce revocation on the stack.
Georges et al. have proposed a new type of capability,

called uninitialized capabilities [6] to prevent the necessity
of clearing the write-local memory in this stack setting.

Linear capabilities are capabilities that cannot be du-
plicated. Consequently, when one party passes a linear
capability to another, it cannot retain a copy, effectively
revoking the capability. They are discussed in the CHERI
ISA specification, but have not (yet) been implemented
[7]. Van Strydonck et al. used linear capabilities to im-
plement revocation in a fully abstract compiler from
separation-logic-verified C code to a capability machine
[8], and Skorstengaard et al. used them to enforce well-
bracketed control flow and stack encapsulation [9]. Be-
cause linear capabilities cannot be copied at all, they
are a very restrictive way of revoking capabilities. For
example, they cannot be used to provide multiple parties
with simultaneous read-only access, or in a multi-threaded
setting.

In this paper we present another way of revoking capa-
bilities, through the use of a new type of capability called
borrowed capability. Borrowed capabilities expand upon
linear capabilities and offer a more flexible approach to
revocation, without requiring clearing regions of memory
like local capabilities do. They allow software to define
scopes, called lifetimes, in the form of lifetime tokens and
bind capabilities to those tokens, requiring that the lifetime
token is present when dereferencing the capability. Fig. 1b
illustrates this concept, where an alive (A) lifetime token
(A, o, , ,) (where the represents a don’t care value
for fields we will explain later) needs to be present in
register 31 to allow loading or storing through a capability
(p, o, l, b, e, a), where o now represents the lifetime. The
revocation problem then shifts to the revocation of life-
times as opposed to the revocation of individual capabili-
ties. This gives software the option to avoid the restrictive
copy prohibition associated with linear capabilities, or the
restrictions on storing local capabilities in non-write-local
memory, while still being able to do fine grained revoca-
tion of capabilities. Our work should be considered as an
exploration of the design space of borrowed capabilities
rather than a complete design; section 6 discusses a few
open questions and design decisions that we still aim to
resolve. Nevertheless, we think our work on borrowed
capabilities is mature enough to contribute to the CHERI
ecosystem.

Borrowed capabilities bear a strong resemblance to
substructural type systems such as the ownership and
borrowing system in Rust. These type systems often allow
either mutation or aliasing, but not both at the same time
in order to prevent data races. With borrowed capabilities
we support this behavior by introducing two types of
borrowing: mutable and immutable borrows. One potential
line of future research would hence be a secure compiler
that expresses high-level ownership-related concepts in
terms of borrowed capabilities at the target level. Section 6
discusses how our design can be slightly simplified, in
case we do not care about “aliasing XOR mutation”, but
rather, simply desire flexible revocation.

In summary, our contributions are as follows:

• A proposal for borrowed capabilities, a new type
of capability to allow for efficient, yet flexible,
revocation, combining some of the advantages of
local and linear capabilities.

• A design for an ISA extension of CHERI-RISC-
V to implement borrowed capabilities and express
ownership, borrowing, lifetime fractions, and re-
borrowing capabilities.

• An implementation of said design in the Sail ISA
description language, to illustrate its feasibility.

• An extension of the assembler of the LLVM com-
piler to allow assembling programs using the new
instructions for borrowed capabilities.

Our Sail implementation has been made public and is
available at https://github.com/exolyte/sail-cheri-riscv.

2. CHERI

CHERI, which stands for Capability Hardware En-
hanced RISC Instructions, is an architecture neutral hard-
ware capability protection model with implementations
in MIPS, RISC-V, ARM and x86 [7]. CHERI guaran-
tees strong spatial memory protection. Crucially, CHERI
enforces capability monotonicity; instructions can only
maintain or decrease the authority capabilities grant, never
increase them.

The object type (o or otype) field is almost exclusively
used to implement sealed code-data pairs. These are pairs
of capabilities with the same otype value, where one
capability points to executable code and the other to data
to be used by that code. Code-data pairs are intended to
be used to transfer execution to another security domain,
and hence constitute an implementation of object capa-
bilities. Additionally, 16 fixed, reserved otype values are
used to identify certain other types of capabilities. All
capabilities with an otype value that is different from a
specific otype unsealed value (which we take to be 0 here)
are considered sealed, which prevents them from being
directly modified or used. As shown in fig. 1b, in this
paper we will use the otype field to represent a lifetime.

The linear bit l determines whether a capability is
linear. When the linear bit is set to 1, the capability cannot
be duplicated in any way. This means that the source
capability in load and store instructions, move instructions
and rights update instructions is invalidated or overwritten,
to ensure move semantics. When the linear bit is set to 0,
no such restrictions apply.

3. Borrowed Capabilities

The motivation for borrowed capabilities stems from
the lack of flexibility of linear capabilities, and the mem-
ory clearing overhead of local capabilities. In the design
of borrowed capabilities we introduce a way to break
linearity in a controlled manner.

Linear capabilities themselves still represent unique
ownership of a resource, but can be borrowed, transform-
ing them into borrowed capabilities instead, and allowing
for linearity to be broken temporarily, and e.g. read-only
ownership to be shared between multiple stakeholders.
Separate linear tokens, called lifetime tokens, define un-
forgeable lifetimes that linear capabilities are bound to
during this borrowing process. Borrowed capabilities can
only be dereferenced while a live (as opposed to dead),
matching lifetime token is present in register 31. Ending
the lifetime corresponds to revocation, without requiring

https://github.com/exolyte/sail-cheri-riscv

a ∈ Addr , [0,AddrMax]

p ∈ Perm , O | RO | RX | RW | RWX

o ∈ Otype , [0,OtypeMax]

l ∈ Linear , 0 | 1
c ∈ Cap , {(p, o, l, b, e, a)

| b, e, a ∈ Addr}

s ∈ State , A | D

f ∈ Fraction , [0,FractionMax]

lt ∈ LifetimeToken , {lt(s, lid, cid, pid, f)
| lid, cid, pid ∈ Otype}

idx ∈ Index , [0, IndexMax]

it ∈ IndexToken , {it(lid, idx) | lid ∈ Otype}
bt ∈ BorrowTable , Index ⇀ Cap

r ∈ RegName

ϕ ∈ ExecConf , Reg ×Mem

i ::= . . . | CCreateToken r r | CKillToken r r |
CUnlockToken r r r | CSplitLT r r |
CMergeLT r r r | CBorrowImmut r r r |
CBorrowMut r r r | CRetrieveIndex r r r

Figure 2. Machine words, machine state and added instructions.

all borrowed capabilities to be returned; killing a lifetime
revokes all authority of borrowed capabilities bound to
that lifetime. Similarly to the situation in Rust, we provide
for two types of borrowing; mutable and immutable bor-
rowing, corresponding to the cases where we are interested
in respectively aliasing and mutation.

To describe our design more precisely, we define some
basic syntactic constructs for our capability machine in fig.
2. The top section defines pre-existing notions for capabil-
ities and their fields while the middle section defines the
constructs we add which we will explain throughout this
section. The bottom section lists the state of our machine,
consisting of memory and registers, and lists the new
instructions we add. The semantics of the new instructions
are shown in fig. 3.

We represent the fields of lifetime tokens as a tuple
of the form lt(s, lid , cid , pid , f) representing the state,
lifetime id, child id, parent id and fraction fields. The
state field indicates whether the lifetime associated with
the lifetime token is alive (A) or dead (D). The first case of
the CCreateToken instruction in fig. 3 creates a normal
standalone alive lifetime token. The second case will be
explained later in this section. Alive lifetime tokens are
linear and can be used to borrow new capabilities, and
dereference existing borrowed capabilities when placed
in a specific register. A lifetime token can be irreversibly
killed with the CKillToken instruction. This changes
the state to dead which results in the lifetime token losing
its linearity. In this state, a lifetime token cannot be used
anymore to borrow capabilities or dereference borrowed
capabilities, but it does serve as a proof of the lifetime’s
end that can be freely copied and passed around. The
lifetime id field holds the lifetime id associated with
the token. This is a unique id that is used to match a
borrowed capability with its corresponding lifetime token.
The fraction, parent id and child id fields will be discussed

later in this section.
A lifetime token can be used to borrow a capability

through the CBorrowImmut or CBorrowMut instruc-
tions, for immutable and mutable borrows respectively.
What happens in these borrow operations is that the capa-
bility that gets borrowed is stored in a table that we call the
borrow table (bt). The source register is overwritten with
the borrowed capability. This borrowed capability points
to the same region of memory as the original capability
but it differs in a few ways. First, the borrowed capability
holds the lifetime id of the lifetime it was borrowed under
in its otype field. This is necessary in order to check
whether the used lifetime token matches the borrowed
capability when dereferencing it. Second, depending on
whether the original capability was immutably or mutably
borrowed, the borrowed capability might have differing
permissions. Immutably borrowed capabilities lose their
linearity as well as their write permissions if they were
present on the original capability. This weakens the orig-
inal linear capability’s exclusive access to a resource, but
does so in a controlled manner, namely for the duration
of the lifetime. This is sufficient to prevent simultaneous
write accesses while allowing multiple references with
read access. This behavior allows programming languages
with substructural type systems to be mapped to bor-
rowed capabilities. Mutably borrowed capabilities keep
their linearity and write access. While it may seem that
this behavior does not have advantages over regular linear
capabilities, this is not the case. Callees only need to
return lifetime tokens to their callers, not the borrowed
capabilities themselves. This allows callers to hand out
multiple capabilities borrowed under the same lifetime to
a callee and revoke all of them at once by receiving the
lifetime token back, and ending the lifetime. Some issues
arise when the structure that a borrowed capability points
to contains references in the form of capabilities itself.
We will address these issues further in section 6.

As previously mentioned, when a capability is bor-
rowed, the original capability is stored in the borrow table,
to be retrieved after the lifetime ends. In order to retrieve
capabilities from the borrow table, we introduce linear
index tokens that can be traded for the original capabil-
ity in the borrow table through the CRetrieveToken
instruction. We represent index tokens as a tuple of the
form it(lid , idx), keeping track of the lifetime id lid under
which the capability stored at index idx was borrowed.
Index tokens are produced by the previously described
borrow instructions. The CRetrieveToken instruction
requires both the index token as well as a dead correspond-
ing lifetime token that acts as proof that the borrowed
capabilities cannot be used anymore. This system allows
for mutual distrust between a callee and their caller since
the callee has a guarantee that its caller cannot access the
original capability while it owns the living lifetime token,
and the caller has the guarantee that the callee can no
longer access the borrowed capability when it has a dead
lifetime token.

As we have explained, one of the disadvantages of
linear capabilities is their restrictiveness with regards to
simultaneous access. With the design of borrowed capabil-
ities, this restrictiveness shifts from capabilities to lifetime
tokens. This is why we introduce lifetime fractions.

To allow dereferencing immutable borrows in multiple

i JiK(ϕ) Conditions

CCreateToken r1 r2 ϕ[reg.r1 7→ w1, reg.r2 7→ w2]

if ϕ.reg(r2) == lt(D, 0, 0, 0, 0) then
w1 = lt(A, lid, 0, 0, 0) and w2 = lt(D, 0, 0, 0, 0)

else if ϕ.reg(r2) == lt(A, pid, 0, ppid, f) then
w1 = lt(A, lid, 0, pid, 0) and
w2 = lt(A, pid, lid, ppid, f)

CKillToken r1 r2 ϕ[reg.r1 7→ w1, reg.r2 7→ 0]
ϕ.reg(r2) = lt(A, lid, 0, pid, fmax) and
w1 = lt(D, lid, 0, pid, fmax)

CUnlockToken r1 r2 r3 ϕ[reg.r1 7→ w1, reg.r2 7→ 0]
ϕ.reg(r2) = lt(A, lid, cid, pid, f) and
ϕ.reg(r3) = lt(D, cid, , ,) and
w1 = lt(A, lid, 0, pid, f)

CSplitLT r1 r2 ϕ[reg.r1 7→ w1, reg.r2 7→ w2]
ϕ.reg(r1) = lt(A, lid, cid, pid, f) and
w1 = lt(A, lid, cid, pid, f + 1) and
w2 = lt(A, lid, cid, pid, f + 1)

CMergeLT r1 r2 r3
ϕ[reg.r1 7→ w1, reg.r2 7→ 0,

reg.r3 7→ 0]

ϕ.reg(r2) = lt(A, lid, cid, pid, f) and
ϕ.reg(r3) = lt(A, lid, cid, pid, f) and
w1 = lt(A, lid, cid, pid, f − 1)

CBorrowImmut r1 r2 r3
ϕ[reg.r1 7→ w1, reg.r2 7→ w2,

bt.idx 7→ ϕ.reg(r2)]

ϕ.reg(r2) = (p, o, 1, b, e, a) and
ϕ.reg(r3) = lt(A, lid, , pid,) and
if o == 0 or o == pid then

w1 = it(lid, idx) and w2 = (RO, lid, 0, b, e, a)

CBorrowMut r1 r2 r3
ϕ[reg.r1 7→ w1, reg.r2 7→ w2,

bt.idx 7→ ϕ.reg(r2)]

ϕ.reg(r2) = (p, o, 1, b, e, a) and
ϕ.reg(r3) = lt(A, lid, , pid,) and
if o == 0 or o == pid then

w1 = it(lid, idx) and w2 = (RW, lid, 1, b, e, a)

CRetrieveIndex r1 r2 r3
ϕ[reg.r1 7→ w1, reg.r2 7→ 0,
bt.idx 7→ 0]

ϕ.reg(r2) = it(lid, idx) and
ϕ.reg(r3) = lt(D, lid, , ,) and w1 = ϕ.bt(idx)

Figure 3. Operational semantics for essential cases in our novel instructions.

threads concurrently, we allow lifetime tokens to have
a fraction f and be split using the CSplitToken in-
struction. Fractions are represented as an integer where a
fraction of 0 signifies the full lifetime token. Splitting a
lifetime token with fraction f results in two copies of
the lifetime token with respective fractions f1 and f2,
such that f1 = f2 = f + 1. Both fractions can still
be used to borrow capabilities or dereference borrowed
capabilities. Merging identical lifetime tokens is possible
with the CMergeToken instruction. To prevent dead and
alive lifetime tokens of the same lifetime id being present
at the same time, only unfractured lifetime tokens can
be killed. Once different threads or adversaries using the
fractions of the lifetime token have completed their work,
they can return the lifetime fractions which can then be
merged again to the full lifetime token, which can then
be killed.

Care must be taken when borrowing borrowed ca-
pabilities, a so-called “reborrow” operation. Borrowed
capabilities cannot be allowed to be reborrowed under just
any lifetime. This would make it possible to reborrow a
capability under a lifetime that is longer than the original
borrow which breaks all guarantees provided by revoca-
tion. To make reborrows possible, we introduce lifetime
hierarchies. With this system, lifetimes can be created as
sublifetimes of existing lifetimes by providing a fraction
of the desired parent lifetime to the CCreateToken
operation as shown in the second case in fig. 3. This
sets the child id field on the parent to the lifetime id
of the newly created lifetime and sets the parent id field
of the newly created lifetime token to the lifetime id of
the parent. Lifetime tokens cannot be killed while they
have a child id set, but don’t lose any of their other func-
tionality. This ensures that sublifetimes cannot last longer
than their parent lifetime while still keeping the parent

lifetime available. In order to remove a child from a parent
lifetime token, a dead lifetime token with the lifetime id
of the child id field on the parent token is needed. These
two tokens can then be used in the CUnlockToken
instruction which clears the child id field on the parent
token. The parent token can then be killed or receive a
new sublifetime.

Lifetime hierarchies allow for safe reborrowing
through the normal borrow operations CBorrowImmut
and CBorrowMut. The main requirement for reborrow-
ing borrowed capabilities is that the parent id on the used
lifetime token matches the lifetime id of the capability
that is being reborrowed. This ensures that a reborrow
happens under a sublifetime and thus that the reborrow
has a shorter lifetime than the original borrow. One issue
with lifetime hierarchies is that a lifetime token can only
have one parent, which makes it impossible to reborrow
multiple capabilities with different lifetimes under the
same lifetime. We will address this further in section 6.

4. Design Implementation

In this section, we discuss how we implemented the
design from the last section as an extension of the Sail
model for CHERI-RISC-V. Sail is an instruction set ar-
chitecture (ISA) specification language that can be used
to formally describe the semantics of the instructions of
an ISA [10]. Sail models have a variety of additional uses
such as generating documentation, deriving an emulator
and formal reasoning about the ISA. The implementation
provides us with an exact description of the semantics
of new instructions as well as an emulator that we can
use to run test assembly programs. Because Sail does not
generate an assembler out of the box, we also extended
CHERI’s fork of the LLVM compiler to support our

newly added instructions. This extension has the added
advantage of providing a means to generate well-formed
binaries that we can run in the Sail emulator. Because no
implementation of linear capabilities for the Sail model
existed, we had to implement linear capability support be-
fore starting on borrowed capabilities. We will not expand
further on our implementation of linear capabilities.

The first issue with mapping the design of borrowed
capabilities to the CHERI architecture is the representation
of lifetime and index tokens. CHERI assumes all capabil-
ities satisfy a single, specific layout and does not offer a
layout for tokens that hold different information. Because
we require a number of fields that are not present in
the current capability layout, we reinterpret the layout of
capabilities when they are interpreted as lifetime or index
tokens. To keep the interpretation of a capability simple,
we simply reinterpret and split up fields that are present in
regular capabilities. In the long run, it would be interesting
for the CHERI architecture in general to support more than
one capability format, for different functionality.

For both tokens, we keep the permissions and otype
fields as they are in regular capabilities. We use the otype
field to identify lifetime or index tokens by setting their
value to one of the 16 reserved otype values that were
previously mentioned. For lifetime tokens, we use one of
the capability bounds fields to store the lifetime fraction
and split up the address field to store the lifetime id, parent
id and child id values that are 18 bits each. For index
tokens, we split up the address field to store the index
and lifetime id values. The width of the index field is
proportional to the size of the borrow table and was chosen
to be 16 bits in our prototype, but can be expanded or
shrunk as needed. As mentioned in section 3 we use the
otype field to store the lifetime id in borrowed capabilities.
Because this use of the otype field clashes with the already
present use case of code-data pairs, we reserve the lower
half of the otype space for borrowed capabilities. This
means that generated lifetime id’s can only come from
this range of values. An alternative to this scheme would
be to add a borrowed bit to capabilities which would then
be used as an indication for how to interpret the otype
field. In order to create unique lifetime ids we introduce
a special lifetime counter register that is read from and
incremented each time a new lifetime token is created.

To support borrowed capabilities, we had to modify
a number of existing CHERI instructions. The first class
of these instructions are the load and store instructions,
which were modified to check for a lifetime token with
a specific lifetime id in a specific register when deref-
erencing a borrowed capabilities. The second class are
the instructions that deal with sealed capabilities, because
using the otype field for lifetime ids results in borrowed
capabilities being a special-cased form of sealed capabil-
ities. This means that the instructions that assume that all
sealed capabilities are code-data pairs need to be modified.
The last class of instructions are the instructions that
manipulate the address field of a capability. We modified
these instructions to make it possible to change the ad-
dress field on a sealed borrowed capability. This makes it
possible to dereference every part of a borrowed capability
that points to a data structure such as an array or struct. Of
course we also added the instructions described in section
3.

5. Example Program

Fig. 4 shows a simple snippet of an assembly program
that illustrates the usage of the new instructions, annotated
with Rust code that matches this assembly. The first two
lines load an integer to integer register x1 and store that
integer in the memory pointed to by the capability in ca-
pability register c2. This is somewhat similar to creating
a new variable, x, and assigning it a value. The next four
lines start by creating a lifetime token, which is roughly
similar to opening a new scope. The lifetime token is then
used to mutably borrow x with the borrowed capability
being placed in register c2 and the resulting index token
being placed in c4. The following two instructions store
a new value to memory using the borrowed capability.
This is allowed, because the lifetime token is present
in the lifetime register c31. In the next five lines, a
new lifetime token is created as the child lifetime of the
previous lifetime token and used to immutably reborrow
the mutable borrow. The program then uses the immutable
reborrow and the lifetime token in c31 to load the value
to x7 after which it closes the scope by killing the lifetime
token. The next four lines start by using the index token
and dead lifetime token to retrieve the mutable borrow
from the borrow table. Following that, the child lifetime
is removed from the first lifetime token, which allows it to
be killed and used together with the index token in c4 to
retrieve the original capability, corresponding to variable
x.

1 li x1 0x5
2 sw.cap x1 0(c2) #let mut
3 #x = 5;
4

5 CCreateToken c31 c0 #{
6 CBorrowMut c4 c2 c31 #y = &mut x;
7 li x1 0x6
8 sw.cap x1 0(c2) #*y = 6;
9

10 CMove c30 c31
11 CCreateToken c31 c30 #{
12 CBorrowImmut c5 c2 c31 #z = &y;
13 lw.cap x7 0(c2) #temp = 6;
14 CKillToken c31 c31 #}
15

16 CRetrieveIndex c5 c5 c31
17 CUnlockToken c30 c31
18 CKillToken c30 c30 #}
19 CRetrieveIndex c4 c4 c30

Figure 4. An assembly program illustrating the proposed ISA extension.

6. Discussion

This section discusses remaining challenges in our
current design, which we aim to resolve in future work.

Multiple output registers. The biggest obstacle to
implementing borrowed capabilities in microarchitecture
is the requirement for some new instructions to write to
multiple registers, which can be expensive in hardware.
This cost was already present in the implementation of
linear capabilities themselves [9]. Sometimes an input
register simply needs to be cleared, such as the index
token in CRetrieveIndex. In these cases it suffices
to require that the output register is equal to the input

register, resulting in the input register being overwritten.
However, in other cases multiple register writes cannot be
avoided; e.g. the borrow instructions need to write both
an index token and the borrowed capability.

No “read XOR write”. In case we are not inter-
ested in preventing simultaneous read and write accesses
to borrowed capabilities, we can combine (im)mutable
borrows into one general borrow operation, which pro-
vides a duplicable capability that preserves write-access.
A caller of this borrow operation can then still choose to
only share read-access with an adversary, by restricting
the permissions of the borrowed capability. This scheme
also permits borrowing non-linear capabilities, as the re-
cipient no longer requires the guarantee that no aliases
of a mutable borrow or writable aliases of an immutable
borrow exist elsewhere.

Dynamic lifetime dependencies. As mentioned in
section 3, an issue with lifetime hierarchies is that a life-
time token can only have a single parent. To solve this, we
have come up with a different scheme for reborrowing that
we have not yet fully explored, called dynamic lifetimes,
which is inspired by the lifetime calculus in RustBelt [11].
This involves borrowing a fraction of the parent lifetime
under the child lifetime, and thereby storing this fraction
in the borrow table. Since the fraction of the parent
that is needed to kill it can only be retrieved from the
borrow table with the help of the dead child lifetime
token, it is ensured that the parents’ lifetime is longer
than the child’s. This scheme allows any lifetime token
to dynamically become a child of another lifetime token.
Reborrowing a capability with the parent’s lifetime under
the child’s lifetime would then be possible by providing
the reborrowing instruction with the borrowed lifetime
fraction, as dynamic proof of relationship between the
parent and child lifetime. Dynamic lifetimes would make
the lifetime system more flexible at the cost of extra stores
to the borrow table, and the complexity of managing the
borrowed lifetime token fractions.

Recursive loads. Lastly, a possible concern with
borrowed capabilities is their ability to load other capa-
bilities from the memory they point to. This is a prob-
lem because the recursively loaded capabilities would not
be lifetime-restricted, resulting in the possibility for an
adversary to keep the references after the borrow has
ended. A possible solution is to automatically borrow any
loaded capabilities under the parent capability’s lifetime
(or a sublifetime thereof). However, this might still lead to
simultaneous read and write accesses; it is e.g. possible to
load the same mutable reference twice. This problem can
be mitigated by making all loaded capabilities lose their
write access which is something that the experimental
CHERI Permit Recursive Mutable Load permission does
[7]. Alternatively, to avoid loading the same linear, mu-
table reference multiple times, the mutable reference in
memory would have to be overwritten.

7. Conclusion

We have presented our design for borrowed capabili-
ties, a new alternative for revocation in CHERI, by show-

casing the semantics for a CHERI-RISC-V ISA extension,
and discussing our Sail implementation of said design. As
discussed, the design is in the prototype stage, and details
of the design as well as practical usefulness need to be
investigated further.

References

[1] R. N. M. Watson, J. Woodruff, P. G. Neumann, S. W. Moore,
J. Anderson, D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie,
S. J. Murdoch, R. Norton, M. Roe, S. Son, and M. Vadera,
“CHERI: A Hybrid Capability-System Architecture for Scalable
Software Compartmentalization,” in IEEE Symposium on Security
and Privacy, 2015, pp. 20–37.

[2] N. Joly, S. ElSherei, and S. Amar, “Security analysis
of CHERI ISA,” 2020. [Online]. Available: https:
//github.com/microsoft/MSRC-Security-Research/blob/master/
papers/2020/Security%20analysis%20of%20CHERI%20ISA.pdf

[3] H. Xia, J. Woodruff, S. Ainsworth, N. W. Filardo, M. Roe,
A. Richardson, P. Rugg, P. G. Neumann, S. W. Moore, R. N. M.
Watson, and T. M. Jones, “CHERIvoke: Characterising Pointer Re-
vocation using CHERI Capabilities for Temporal Memory Safety,”
in IEEE/ACM International Symposium on Microarchitecture.
ACM, Oct. 2019.

[4] N. W. Filardo, Brett F. Gutstein, Jonathan Woodruff, Sam
Ainsworth, Lucian Paul-Trifu, Brooks Davis, Hongyan Xia, Ed-
ward Tomasz Napierala, Alexander Richardson, John Baldwin,
David Chisnall, Jessica Clarke, Khilan Gudka, Alexandre Joannou,
A. Theodore Markettos, Alfredo Mazzinghi, Robert M. Norton,
Michael Roe, Peter Sewell, Stacey Son, Timothy M. Jones, Simon
W. Moore, Peter G. Neumann, and Robert N. M. Watson, “Cor-
nucopia: Temporal Safety for CHERI Heaps,” in IEEE Symposium
on Security and Privacy. IEEE, May 2020.

[5] L. Skorstengaard, D. Devriese, and L. Birkedal, “Reasoning about
a machine with local capabilities - provably safe stack and return
pointer management,” in European Symposium on Programming,
2018, pp. 475–501.

[6] A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu,
S. Huyghebaert, D. Devriese, and L. Birkedal, “Efficient and prov-
able local capability revocation using uninitialized capabilities,”
Proceedings of the ACM on Programming Languages, vol. 5, no.
POPL, pp. 6:1–6:30, Jan. 2021.

[7] R. N. M. Watson, P. G. Neumann, J. Woodruff, M. Roe,
H. Almatary, J. Anderson, J. Baldwin, G. Barnes, D. Chisnall,
J. Clarke, B. Davis, L. Eisen, N. W. Filardo, R. Grisenthwaite,
A. Joannou, B. Laurie, A. T. Markettos, S. W. Moore,
S. J. Murdoch, K. Nienhuis, R. Norton, A. Richardson,
P. Rugg, P. Sewell, S. Son, and H. Xia, “Capability Hardware
Enhanced RISC Instructions: CHERI Instruction-Set Architecture
(Version 8),” University of Cambridge, Computer Laboratory,
Tech. Rep. UCAM-CL-TR-951, 2020. [Online]. Available:
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.html

[8] T. Van Strydonck, F. Piessens, and D. Devriese, “Linear capabilities
for fully abstract compilation of separation-logic-verified code,”
Proc. ACM Program. Lang., vol. ICFP, 2019.

[9] L. Skorstengaard, D. Devriese, and L. Birkedal, “StkTokens: En-
forcing well-bracketed control flow and stack encapsulation using
linear capabilities,” Proc. ACM Program. Lang., vol. 3, no. POPL,
Jan. 2019.

[10] A. Armstrong, T. Bauereiss, B. Campbell, S. Flur, J. French,
K. E. Gray, G. Kerneis, N. Krishnaswami, P. Mundkur, R. Norton-
Wright, C. Pulte, A. Reid, P. Sewell, I. Stark, and M. Wassell,
“The Sail instruction-set semantics (ISA) specification language,”
2013–2019.

[11] R. Jung, J.-H. Jourdan, R. Krebbers, and D. Dreyer, “RustBelt:
Securing the foundations of the Rust programming language,”
Proc. ACM Program. Lang., vol. 2, no. POPL, Dec. 2017.

https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20CHERI%20ISA.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20CHERI%20ISA.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20CHERI%20ISA.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.html

	Introduction
	CHERI
	Borrowed Capabilities
	Design Implementation
	Example Program
	Discussion
	Conclusion
	References

